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Abstract. In this paper, we discuss forward responsibilities in Belief-
Desire-Intention agents, that is, responsibilities that can drive future
decision-making. We focus on individual rather than global notions of
responsibility. Our contributions include: (a) extended operational se-
mantics for responsibility-aware rational agents; (b) hierarchical respon-
sibilities for improving intention selection based on the priorities (i.e., hi-
erarchical level) of a responsibility; and (c) shared responsibilities which
allow agents with the same responsibility to update their priority levels
(and consequently commit or not to the responsibility) depending on the
lack (or surplus) of agents that are currently engaged with it.

Keywords: forward-looking responsibility · task responsibility · BDI
agents.

1 Introduction

A recent “Blue Sky Ideas” paper [26] discussed existing research and new research
opportunities in the application of responsibility for trustworthy autonomous
systems. They describe many research themes and challenges, but of particular
interest to us is the challenge of using responsibility “to ensure system reliability
and fault tolerance in the technical software development context”.

We refer to rational agents as cognitive programmable entities that perform
autonomous decision making by reasoning about events, capabilities, and knowl-
edge of the world. Recent literature reviews on agent-oriented programming have
highlighted the need for safer and more reliable agents [16, 6, 9].

In this paper we focus on forward-looking (as opposed to backward-looking)
responsibilities [18]. In the context of rational agents, the former uses respon-
sibilities to aid in the process of task selection, while the latter is related to
the notions of accountability, liability, and blameworthiness. Many concepts of
responsibility exist, see [26] for a more comprehensive discussion.

We illustrate these different concepts of responsibility in Figure 1. Besides the
dimension regarding its meaning, when considering responsibility-aware agents
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we also have to consider if the view of responsibility that was chosen is centralised
or decentralised. A centralised view of responsibility in autonomous agents occurs
when the information about responsibilities (either backward or forward-looking)
is stored in a shared environment (e.g., organisation), which makes it easier for
any agent to access the responsibilities of other agents. On the other hand,
a decentralised view usually requires communication between agents in order
to obtain access to other agents responsibilities. Whereas previous literature
about responsibility in agent systems have often focussed on organisations or
some other centralised model of responsibilities [25, 24, 2, 3], in this paper we
focus on forward-looking responsibilities where our agents reason about their
own individual responsibilities and have an individual (decentralised) view of
responsibilities. We achieve this by extending well know formal theories for agent
computational models.

Organisational View
(top-down; 
centralised)

Agent View
(bottom-up; 

decentralised)

Forward-looking
(task selection; etc)

Backward-looking
(accountability; etc) Responsibility

Fig. 1. Different dimensions when considering responsibility for rational agents. Direc-
tions of arrows and axes have no additional semantic meaning, an axis simply represents
a different dimension.

Formal agent theories, such as those based on the Belief-Desire-Intention
(BDI) model [8], do not include the notion of responsibility. Models where re-
sponsibilities (and the similar concept of agent roles) have been described pre-
dominantly take a centralised/organisational view. We propose extending agent
models and theories with forward-looking, decentralised responsibility and in-
stantiate this by considering their computation in the reasoning cycle of agents.

Our concept of forward-looking responsibilities is distinctively different from
concepts of beliefs and organisational roles, and as such it would not be possible
to flatten our representation to either of these concepts without losing some of
our contributions and still maintain the original identity of beliefs and organi-
sational roles. Most notably, one of these contributions is the direct impact that
responsibilities (in particular their hierarchy) causes in the reasoning cycle by
guiding the intention selection of rational agents.
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2 Related Work

The work in [25] presents a strategic reasoning approach for tackling backward-
looking responsibility in rational agents. They specify the system as a Concurrent
Epistemic Game Structure (CEGS), and apply formal verification of strategic
properties (Alternating-time Temporal Logic in particular) to conclude the re-
sponsibility of the agents w.r.t. the occurrence of some bad event (e.g., applied
to an example where some agents want to poison a certain agent, and when
the agent dies, they want to know who was responsible for it, and in which
amount). In further extension of their work a task coordination framework is
proposed, TasCore [24], which is a dynamic task coordination method for multi-
agent strategic reasoning. There are two main parts of TasCore: task allocation
and a retrospective mechanism for ascribing responsibilities to agents. The lat-
ter is based on their previous work of assigning degrees of responsibilities based
on past history, which in this case relates to the tasks that have been allo-
cated and how they have been fulfilled. Both works are based on the notion of
backward-looking responsibilities. This paper explores forward-looking responsi-
bilities, where agents adopt responsibilities and tasks are then attributed to the
agent.

A series of research papers have tackled the notion of accountability in multi-
agent organisations as a means to improve robustness of the system [2, 1, 3]. In
these papers, the definition of responsibility is closely related to that of roles
in multi-agent organisations. That is, a responsibility is a collection of tasks
that should be performed within a society of agents. Agents are assumed to be
autonomous, and therefore must explicitly commit to responsibilities that they
want oversee. Accountability is represented through accountability agreements
between a pair of agents, where one agent can ask for an account about a particu-
lar task to the other agent. Robustness is obtained by connecting failed accounts
to recovery strategies, which in turn can trigger treatment tasks that eventually
lead to new commits to responsibilities. The main difference between their work
and ours is that they take an organisational view of responsibilities rather than
our individual agent view.

Other works that are tangential to ours include: the missions in the organ-
isational layer of the JaCaMo multi-agent programming framework [5] that re-
semble our notion of forward-looking responsibility in that they also serve as
triggers for adding a collection of goals, but provide no means of automatically
reasoning about them, and their use requires a centralised organisation; main-
tenance goals [14] seek to maintain a particular state of the world, which share
some similarities with our work, but in our case we are more interested in the
overall behaviour of the agent and its impact in intention selection; and a set
of requirements for accountability in autonomous agents [11] with a strong fo-
cus on organisational norms. However, none of the above consider the concept
of forward-looking responsibility reasoning in rational agents with an individual
agent view.
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3 Responsibility-Aware Agents

We formalise responsibility by extending the syntax and operational semantics
of BDI agent languages such as AgentSpeak(L) [20], AgentSpeak− [12], and
Jason [7]. Note that we do not present the complete syntax or formal semantics
for these languages, we simply report the necessary rules and extensions for
obtaining responsibility-aware agents. Further considerations may be necessary
when trying to implement it in these (and other) agent languages. Nonetheless,
the observations about the implementation details that we provide in Section 4
may be of some help.

We focus on BDI because it is the most traditional implementation of ratio-
nal agents with a rich selection of programming languages (Jason, JaCaMo [4],
ASTRA [10], CAN [23], Gwendolen [13], etc.) and has been shown in recent sur-
veys [16, 6, 9] to have many open research problems that still need to be solved.

The BDI model of agency [8, 19] revolves around three main attitudes: beliefs
is the knowledge that the agent has about the world; desires are goals that the
agent wants to achieve; and intentions are the means of achieving the goals that
the agent has committed to. BDI agents have a reasoning cycle that follows the
‘sense-plan-act’ methodology. The sense phase consists of receiving perceptions
from the environment and messages from other agents. The plan phase starts
with the generation of events, which can come from the addition/deletion of
beliefs or goals. These events trigger the plan selection mechanism, which con-
sults the plan library for relevant and applicable plans and then selects one to
be added to the intention stack. The act phase removes and executes the top
intention in the selected intention stack.

We add the notion of task responsibility (henceforth referred to simply as
responsibility) in the reasoning cycle of the agent. Informally, responsibility is
a task containing a collection of goals that relate to an overarching topic (e.g.,
responsibility for safety). When an agent adopts a responsibility, an event is
generated that triggers the associated plan to start pursuing the goals that it is
now responsible for achieving. An overview of the resulting reasoning cycle for
responsibility-aware agents is shown in Figure 2.

We show the syntax for rational agents with responsibilities in Figure 3. The
differences from the traditional syntax found in most BDI-based agent languages
are the addition of a responsibility base along with the notion of responsibilities
and the respective triggering events from adopting/dropping responsibilities, as
well as adding support for updating the responsibility base inside the body of a
plan. Note that the dynamic creation of responsibilities is not supported in this
paper, the update simply refers to adopting or dropping a responsibility. We also
support expressing responsibilities in the context of a plan, even thought this
is not used directly in our theory, it can be useful in practice when building an
agent program.

The responsibility base is there to provide a clear separation from the belief
base. Each agent has its own individual responsibility base. An agent is capable
of handling any responsibility in its base, but it does not initially commit to any
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Fig. 2. Responsibility-aware BDI agent reasoning cycle.

of them by default. Adopting and dropping4 responsibilities have to be manually
inserted in the agent program, since the best moments at which to do this will
require domain specific information. A responsibility that is dropped remains in
the responsibility base because the agent can decide that it needs to adopt it
again in the future.

A key difference between responsibility and belief bases is that responsibilities
can only be defined at design time. Nevertheless, the following changes can occur
to them at runtime: an agent can decide to adopt or drop a responsibility, thus
altering the number of agents currently committed to it (i.e., active agents); and
the priority that the agent has for a responsibility can be changed depending
on specific circumstances at runtime related to shared responsibilities. Priorities
and how they are used to guide intention selection are presented in Section 3.1.
Shared responsibilities and how they can alter the priority that an agent has for
a responsibility through agent communication are covered in Section 3.2.

To illustrate a typical responsibility, let us consider an example where a
domestic robot is embedded with a rational agent that performs the high-level
decision making. This agent has the following responsibility in its responsibility
base:

cleaning([clean(bathroom), clean(bedroom)], 0, 1)

where the responsibility name is cleaning, the associated goals are to clean the
bathroom and the bedroom, the current number of active agents committed to
this responsibility is 0, and the recommended number is 1. Because we only have
one responsibility in this example we omit the hierarchy (this is discussed in
Section 3.1).

4 If the goals associated with the responsibility have been successfully achieved, then
the responsibility is automatically dropped.
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agent : := bb rb pl
bb : := b e l i e f 1 . . . b e l i e f n (n ≥ 0)
rb : := resp 1 . . . re spn h (n ≥ 0)
p l : := plan1 . . . plann (n ≥ 1)
b e l i e f : := at
g : := at
at : := P( t1 , . . . , tn ) (n ≥ 0)
resp : := P( [ g1 , . . . , gn ] , na , r e c ) (n ≥ 1)
h : := h i e ra r chy ( [ h l 1 . . . hln ] ) (n ≥ 1)
h l : := [Presp1 . . . Prespn ] (n ≥ 1)
plan : := te : { context } ← body
te : := +!g | +b e l i e f | −b e l i e f

| +/resp | −/resp
context : := ct1 | ⊤
ct1 : := b e l i e f | ¬ b e l i e f | r e sp

| ¬ re sp | ct1∧ct1
body : := bd1 ,⊤ | ⊤
bd1 : := +!g | a c t i on | bbupdate

| rbupdate | bd1 ; bd1
ac t i on : := A( t1 , . . . , tn ) (n ≥ 0)
bbupdate : := +b e l i e f | −b e l i e f
rbupdate : := +/resp | −/resp

Fig. 3. Syntax for responsibility-aware rational agents. bb is belief base. rb is responsi-
bility base. pl is plan library. g is goal. at is an atomic formulae with P as a predicate
name and (t1, . . . , tn) as first-order logic terms. resp is responsibility with na as the
current number of “active” agents committed to this responsibility and rec as the rec-
ommended number of agents. h is the hierarchy of responsibilities, it uses the reserved
word (and terminal symbol) hierarchy as the predicate name. hl is a hierarchical level
containing a partial order of responsibilities in that level. te is triggering event. ct1 and
bd1 are context and body (resp.) to support chaining. A in action is a predicate name
for the action. +/resp and −/resp have the extra forward slash symbol to differentiate
it from belief operations.

Each responsibility also has a corresponding plan that triggers once the agent
has decided to adopt the responsibility. For the previous example we would have
the following plan:

+/c l e a n i n g : { ⊤ }
← +! c l e a n ( bathroom ) ,

+! c l e a n ( bedroom ) ,
−/c l e a n i n g .

The context of the plan is always true and the body of the plan contains the goals
associated with the responsibility. Note that the body of plans usually follow a
sequential composition, which means that the order in which the goals appear
here is the order that they will be attempted to be achieved. At the end of the
plan the cleaning responsibility is dropped.
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The syntax from Figure 3 does not cover plan selection or the way that inten-
tion stacks work since these are not elements that can be expressed by the user
of the language. Instead, these elements are controlled internally by rules and
functions in the language. Next, we describe the standard operational seman-
tics for these rules, since they are required to introduce our new extensions for
adopting and dropping a responsibility, as well as to better understand where
the contributions that are presented later on fit in the reasoning cycle of the
agent. Due to space constraints we omit the cases for most of the rules where we
would need an additional rule for when there are no elements to consume/han-
dle, in which case the reasoning cycle would simply skip to another phase of
the reasoning cycle. For example, rules that deal with empty elements in plan
selection would skip to the intention selection phase. To improve readability we
also omit the use of unifiers.

The inference rules that define the operational semantics represent transi-
tions between agent configurations in the reasoning cycle of an agent. An agent
configuration is denoted as:

Conf = ⟨agent, C,M, T, rule⟩

where agent is the agent program composed of a belief base, a responsibility
base, and a plan library; C is an agent’s current circumstance represented by
the tuple ⟨I, E,A⟩, respectively the set of intention stacks (sometimes referred
to as intended means), set of events, and set of actions; M represents the asyn-
chronous communication between agents as a tuple ⟨In,Out⟩, respectively the
mail box and outgoing messages to be sent; T is an auxiliary structure that stores
relevant temporary information that can be useful within a cycle, it is a tuple
⟨Rel,App, ev, ie, si, res, pl⟩ with Rel the set of relevant plans, App the set of ap-
plicable plans, ev, ie, si, res, and p a particular event, intention associated with
event, intention selected for execution, responsibility, and plan (respectively);
and rule is the current step in the agent’s reasoning cycle, representing which
inference rule will be used in that step. To refer to sub-elements of an element
in a tuple, such as the set of intentions in a circumstance we use CI , similarly,
CE for set of events CA for set of actions, and so on.

Plan selection is often separated into four phases: (1) selection of an event;
(2) obtaining relevant plans; (3) obtaining applicable plans; and (4) selection of
a plan.

Selection of an event. We need to select an event from the events that are
currently active. The following inference rule is used for selecting an event5:

(SelEv)
SelectEvent(CE) = te

⟨agent, C,M, T, SelEv⟩ → ⟨agent, C ′,M, T ′, RelP l⟩

where C ′
E = CE \ {te}

T ′
ev = te

T ′
ie = GetIntention(te)

5 In subsequent inference rules we assume that elements of the state remain unchanged
unless explicitly stated in the rule.
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This rule says that the SelectedEvent function uses the event set in the cir-
cumstance CE to select a triggering event te. Usually implementations of this
function will simply select an event following the ordering method first in, first
out. The rule updates the event set in the circumstance by removing the selected
event from it, as well as assigning the event to the respective auxiliary struc-
ture to be used in further rules. The get intention function returns the intention
associated with the selected event if that event was generated from previous
executions of other plans (i.e., internal event), or ⊤ if it was generated from a
perception (i.e., external event).

Obtaining relevant plans. It is necessary to obtain the relevant plans that match
the selected event, which can be obtained with the rule:

(RelPl)
RelevantP lans(Te) ̸= ∅

⟨agent, C,M, T,RelP l⟩ → ⟨agent, C,M, T ′, AppP l⟩

where T ′
Rel = RelevantP lans(Te)

The relevant plans function is straightforward since we simply have to match the
previously selected event with the triggering event of plans in the plan library.

Obtaining applicable plans. To obtain the applicable plans we need to compare
the set of relevant plans to the belief base:

(AppPl)
ApplicableP lans(agentbb, TRel) ̸= ∅

⟨agent, C,M, T,AppP l⟩ → ⟨agent, C,M, T ′, SelP l⟩

where T ′
App = ApplicableP lans(agentbb, TRel)

The applicable plans function will iterate over each relevant plan while checking
the context of the plan against the belief base. If the result of this check is true,
then the plan is applicable.

Selection of a plan. A plan is selected for execution from the applicable plans:

(SelPl)
SelectApplicable(T ′

App) = plan

⟨agent, C,M, T, SelP l⟩ → ⟨agent, C,M, T ′, UpdtSt⟩

where T ′
pl = plan

The function for selecting an applicable plan usually picks the first in a top to
bottom order from where they appear in the plan library.

Once a plan is selected, then a new intention stack for the instance of that
plan is created if the intention associated with the triggering event is external:

(CrtSt)
Tie = ⊤ ∧ Tpl = plan

⟨agent, C,M, T,CrtSt⟩ → ⟨agent, C ′,M, T, SelInt⟩

where C ′
I = CI ∪ {plan}



Towards Forward Responsibility in BDI Agents 9

Otherwise, with an internal event we use rule UpdtSt to update an existing stack
of intentions:

(UpdtSt)
Tie = intention ∧ Tpl = plan

⟨agent, C,M, T, UpdtSt⟩ → ⟨agent, C ′,M, T, SelInt⟩

where C ′
I = (CI \ {intention}) ∪ {intention[plan]}

In this case, we update the intention by adding the selected plan at the bottom
of the associated intention stack (represented by intention[plan]).

Plans can be instantiated into separate intention stacks, i.e., at any moment
we can have more than one intention stack. Therefore, it is necessary to have a
way to select the next intention stack to be executed:

(SelInt)
CI ̸= ∅ ∧ SelectIntention(CI) = i

⟨agent, C,M, T, SelInt⟩ → ⟨agent, C,M, T ′, ExecInt⟩

where T ′
si = i

The implementation of the select intention function usually attempts to select
an intention stack based on fairness to avoid starvation. For now we assume a
similar behaviour, but in Section 3.1 we discuss a different implementation that
will instead prioritise intention stacks related to responsibilities based on the
existing partial order in the hierarchy.

In practice, an intention stack is composed of the bodies of selected plans (or
subplans), and as such can include the following (see body in the syntax from
Figure 3 for a complete list): an action, a belief update, a new goal, etc. Each
of them will have their own individual rules that are activated when ExecInt
is called. For the sake of brevity we only show the new operational semantics
inference rules for executing intentions that are related to updating the respon-
sibility base (i.e., adopting or dropping a responsibility), the remaining rules are
all unchanged and thus similar to past work [20, 12, 7, 22].

If the head (topmost) intention in the selected intention stack is the adoption
of a responsibility, then the following rule applies:

(AResp)
Tsi = i[head← +/resp; body]

⟨agent, C,M, T,AResp⟩ → ⟨agent′, C ′,M, T ′, ClrInt⟩

where agent′rb = (agentrb \ resp) ∪UpdateAdopt(resp)
C ′

E = CE ∪ {+/resp}
C ′

I = CI \ {Tsi}
T ′
res = resp

The function to update a responsibility after it has been adopted is used to
update the number of agents currently committed to it (in this case, increasing it
by 1). More importantly, the set of events is updated to include a new event about
this responsibility, which will eventually trigger (when the event is selected) the
corresponding plan containing the list of goals related to it. Lastly, the selected
intention is removed from the set of intentions.
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Otherwise, if the head is the dropping of a responsibility:

(DResp)
Tsi = i[head← −/resp; body]

⟨agent, C,M, T,DResp⟩ → ⟨agent′, C ′,M, T ′, DropInt⟩

where agent′rb = (agentrb \ resp) ∪UpdateDrop(resp)
C ′

E = CE ∪ {−/resp}
C ′

I = CI \ {Tsi}
T ′
res = resp

In this case, the function to update a responsibility decreases the number of
agents currently committed to it by 1, and the selected intention that was just
processed is removed from the set of intentions. Additionally, this rule leads to
the rules for dropping an intention about a responsibility. Rule DInt1 is used
when the drop is invoked from the body of the responsibility plan:

(DInt1)
Tres ⊆ Tpl

⟨agent, C,M, T,DInt1⟩ → ⟨agent, C,M, T,ClrInt⟩

This means that the responsibility is dropped because it came to a natural
conclusion and there are no additional operations to make.

Rule DInt2 deals with the opposite condition:

(DInt2)
Tres ⊈ Tpl

⟨agent, C,M, T,DInt2⟩ → ⟨agent′, C ′,M, T ′, ClrInt⟩

where C ′
I = CI \DropIntention(Tres)

This means that the responsibility is dropped from a plan outside the original
plan, which means that the agent has autonomously decided to stop being re-
sponsible for it (e.g., something has failed, or another responsibility with a higher
priority that conflicts with this one has been adopted). The drop intention func-
tion drops the intention associated with the responsibility, which in this case will
drop the corresponding plan along with its subplans (plans for the goals listed
within the responsibility).

Rules AResp, DInt1, and DInt2 lead to the ClrInt rule, which we omit be-
cause it simply removes empty stacks of intentions and then proceeds to the
beginning of a new cycle.

3.1 Priorities and Hierarchy of Responsibilities

Each agent has it own individual responsibility base which includes not only the
responsibilities that the agent can adopt but also a hierarchy that determines
the priority of a responsibility in relation to others by categorising them into
different hierarchical levels. Responsibilities and the hierarchy are defined at
design time and our theory does not (yet) provide support for them to be changed
dynamically at execution time. The only exceptions are when the current number
of agents committed to a responsibility changes (as shown in the rules AResp and
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DResp with the UpdateAdopt and UpdateDrop functions), and when an agent
tries to adopt a shared responsibility which can cause the hierarchy to change
(this defined later in Section 3.2).

Recall function SelectIntention(CI) from rule SelInt ; we now provide a
pseudo-code implementation for it in Algorithm 1 where an intention stack is
selected based on the priority defined by the hierarchical levels in the agent’s
hierarchy.

Algorithm 1: Selects an intention stack given a set of intentions stacks
as input (CI).
1 Function SelectIntention(CI)
2 i← ∅;
3 if CI ̸= ∅ then
4 RespStacks← GetRespStacks(CI);
5 hlevel← 0;
6 while there exists {stack} ∈ RespStacks do
7 slevel← GetHLevel(stack);
8 if slevel > hlevel then
9 hlevel← slevel;

10 i ← stack;

11 RespStacks← RespStacks \ {stack};
12 if i = ∅ then
13 i← SelectIntentionFairness(CI);

14 return i

First, we initiate the return variable with null. Next, we check if the set of
intention stacks is not empty, i.e., there is at least one active intention stack.
If that is the case, then we use the function GetRespStacks(CI) from line 4
to get all intention stacks that contain a responsibility (we then call these the
responsibility stacks). Because each responsibility has a corresponding plan, then
whenever that plan is selected a new intention stack is created, and any subplans
(e.g., from the associated goals) originated from it are attached to the same stack.
We initiate the variable that holds the most prioritised hierarchical level (hlevel)
with 0. Hierarchical levels are implicit within the hierarchy, and as such can be
extracted with an appropriate function. The last hierarchical level starts at 1,
and increases by 1 as it goes up the levels of the hierarchy.

The while loop (lines 6–11) iterates over each element in the set of responsi-
bility stacks. In this loop we first get the hierarchical level of the responsibility
attached to the stack (stored in variable slevel), and then check if that value
is greater than our currently most prioritised hierarchical level. If it is then we
update the related variables accordingly. Note that we do not test if the level
is equal, since there is no priority between responsibilities within the same hier-
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archical level. Thus, it will simply pick the stack with the responsibility that it
processed first. At the end of the loop we remove the stack that was processed
from the set of responsibility stacks.

It is possible for the set of intention stacks to not be empty while the set of
responsibility stacks is. In this case, the if condition on lines 12–13 is triggered,
which calls an intention stack selection function based on fairness. Our view of
responsibilities in this work is that they should be intentionally prioritised over
intentions belonging to other plans. This may lead to starvation of plans, espe-
cially any plans not related to a responsibility (such as plans for belief updates
that come from the environment or other agents). An efficient implementation
of our function requires to incorporate some level of fairness to attempt to avoid
starvation while still preserving priority of hierarchical levels of responsibilities
as much as possible. Fairness and starvation of threads/processes/resources are
extensively researched topics in Software Engineering, and as such we do not
tackle these concepts here.

To illustrate the use of the hierarchy of responsibilities, let us expand the
previous example of a domestic robot by adding a few extra responsibilities and
building a hierarchy:

c l e a n i n g ( [ c l e a n ( bathroom ) , c l e a n ( bedroom ) ] , 0 , 1 )
s a f e t y ( [ l o c k s ( f r o n t d o o r ) , s e a r c h ( t r i p h a z a r d s ) ] , 0 , 2 )
cook ing ( [ cook ( b r e a k f a s t ) , ma k e l i s t ( g r o c e r y ) ] , 0 , 1 )

h i e r a r c h y ( [ [ s a f e t y ] , [ c l e a n i n g , cook ing ] ] )

Note that the responsibility base above is of a single agent, other agents in
the system may have different configurations in their responsibility bases. In
this extended example, we now have three responsibilities: cleaning, safety, and
cooking. Safety is recommended to have up to two agents being responsible for
it, while the others remain at only one. We provide a visual representation of
the hierarchy for this example in Figure 4.

safety

cleaning cooking

2

1

Fig. 4. Visual representation of a hierarchy.

The hierarchy has two levels, the bottom starts at 1 and contains the cleaning
and cooking responsibilities (recall that responsibilities within the same hierar-
chical level have no relation of priority between each other), then the level above
is 2 and contains safety. Effectively this means that safety has priority over (i.e.,
its hierarchical level is greater than) both cleaning and cooking. Note that the
hierarchical levels do not need to be represented as numbers, for example we
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could also use “Low Importance", “Medium Importance", “High Importance" by
limiting the hierarchy to three levels (there is always one special level called
“idle” which we present in the next section). In this visual representation and
in our algorithm we used N∗ to represent each level with larger numbers being
higher up in the hierarchy. This is an implementation abstraction, and the infor-
mation can be easily extracted from the hierarchy definition and transformed as
preferred (some necessary small updates would need to be made to Algorithm 1
if not using numerical values).

3.2 Improving Reliability with Shared Responsibilities

An individual view of responsibilities requires some form of communication be-
tween the agents in order to keep track of shared responsibilities. Shared re-
sponsibilities are responsibilities that appear in more than one agent’s respon-
sibility base. Our mechanism to improve reliability in shared responsibilities is
based around the recommended number of agents to commit to a responsibility.
Once that number is met, then any agents that try to commit to it will become
“backup” agents in the sense that they alter their responsibility hierarchy to
place this responsibility in a special hierarchical level which we call “idle”. If at
any point this situation reverses (i.e., the number of agents committed to a re-
sponsibility drops below the recommended) then the backup agent has to revert
the position of the responsibility in its hierarchy back to the original one.

We use a simple speech-act tell(adopt(resp)) or tell(drop(resp)) for sending
information about a responsibility that the sender has in its own responsibility
base to all other agents (i.e., a broadcast). An extensive discussion on the for-
mal semantics of speech-act communication in BDI agent languages is available
in [22].

We need to update some of the rules from previous sections to now account
for communication and the reliability mechanism for shared responsibilities. In
particular, the AResp rule presented previously has to be split into two. First, is
the standard case of when the recommended number has not been achieved yet:

(AResp1)
Tsi = i[head← +/resp; body] ∧ respna < resprec

⟨agent, C,M, T,AResp1⟩ → ⟨agent′, C ′,M ′, T ′, ClrInt⟩

where agent′rb = (agentrb \ resp) ∪UpdateAdopt(resp)
C ′

E = CE ∪ {+/resp}
C ′

I = CI \ {Tsi}
T ′
res = resp

M ′
Out = MOut ∪ tell(adopt(resp))

Here we simply add an extra condition to our premise in the original rule to check
that the number of agents committed to the responsibility (respna) is less than
the number of agents recommended (resprec). Additionally, since we are now
also concerned about updating other agents’ information about the number of
agents committed to a responsibility we add the performative tell(adopt(resp))
to the outgoing messages of the agent. Upon receiving such a message, if the
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agent has the responsibility mentioned in the message, then the agent calls the
UpdateAdopt(resp) function to update the number of agents that are committed
to it.

Otherwise, if the recommended number of agents has already been met then
this agent becomes a “backup” agent:

(AResp2)
Tsi = i[head← +/resp; body] ∧ respna ≥ resprec

⟨agent, C,M, T,AResp2⟩ → ⟨agent′, C ′,M, T ′, ClrInt⟩

where C ′
E = CE ∪ {+/resp}

C ′
I = CI \ {Tsi}

T ′
res = resp

agent′rb[hierarchy] = UpdtH(agentrb[hierarchy], resp)

Apart from the addition of the extra condition in the premise, this rule also
modifies the agent’s hierarchy. Because the agent has adopted the responsibility
in a “backup” capacity, it calls the function UpdtH(agentrb[hierarchy], resp) which
changes the hierarchical level of (resp) to idle. Note here that because this is a
backup agent, we no longer update the number of active agents nor do we use
the communication performative that are present in the previous rule. These
two things are only done when the agent changes from backup to active, which
is explained later on.

Similarly, we also have to update DResp, but in this case we only need one
rule so we simply overwrite the previous one:

(DResp)
Tsi = i[head← −/resp; body]

⟨agent, C,M, T,DResp⟩ → ⟨agent′, C ′,M ′, T ′, DropInt⟩

where agent′rb = (agentrb \ resp) ∪UpdateDrop(resp)
C ′

E = CE ∪ {−/resp}
C ′

I = CI \ {Tsi}
T ′
res = resp

M ′
Out = MOut ∪ tell(drop(resp))

The only difference here is the addition of the communication performative tell
which will broadcast the message that an agent has dropped a responsibility, and
therefore any agent that has the same responsibility will use this as a triggering
event to call the UpdateDrop(resp) function, which works the same as before and
simply decreases the number of agents currently committed to a responsibility.

Due to space constraints, we do not show the rules for processing the agent’s
outgoing messages or for processing incoming messages in the mail box, and
instead refer to the work in [22] for a complete list. A couple of straightforward
extensions are required in particular for processing incoming messages about
responsibilities:

tell(adopt(resp)) message

– call function UpdateAdopt(resp) to increase by 1 the number of agents com-
mitted to the responsibility (only if present in the responsibility base).
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tell(drop(resp)) message

– call function UpdateDrop(resp) to decrease by 1 the number of agents com-
mitted to the responsibility (only if present in the responsibility base);

– if the result of the UpdateDrop(resp) function causes the number of com-
mitments to drop below the recommended number, then call the function
RestoreH(agentrb[hierarchy], resp) to restore the responsibility to its previ-
ous hierarchical level (only if it had been changed to idle in the first place);

– call function UpdateAdopt(resp) to reflect that the backup agent has now
become active; and

– send the broadcast tell(adopt(resp)) so that other agents update their infor-
mation accordingly.

We also need to add support for discarding intention stacks for idle responsibili-
ties in Algorithm 1. This is straightforward as we can simply extend the function
GetRespStacks(CI) to return only non-idle responsibility stacks.

Note that we do not explicitly deal with coordination of shared responsibil-
ities. By default, multiple agents adopting the same responsibility will perform
all the goals associated with that responsibility. In practice, this could be solved
in various different ways, such as through communication, organisations, argu-
mentation, task allocation, etc. In this paper we are concerned with providing
the basis for reasoning in responsibility-aware agents, which allow for these ex-
tensions to be developed in future work.

Furthermore, we define how the agent can drop a responsibility and what
happens when it is dropped, and not the specification of when the agent should
drop the responsibility (apart of course from when it believes its responsibility
has come to a natural end) or why (e.g., non-conformance due to time-sensitive
deadline or failure). Deciding when to drop a responsibility, and the reason-
ing behind the decision, is specific to the domain the agent is implemented in.
Therefore being out of scope of this paper.

4 Towards Implementation

The agent languages that are based on AgentSpeak(L) are natural candidates for
incorporating our extensions, especially those that have not extensively modified
the original AgentSpeak(L) semantics. Two options that fit well in this category
are Jason [7] and Gwendolen [13]. Other languages may be viable alternatives,
but may also require additional implementation considerations. We limit this
discussion to be about the most difficult challenges in implementation.

To implement our selection intention stack function from Algorithm 1 is
relatively straightforward. In the Jason language this can be altered in the
TransitionSystem class which represents most of the agent’s reasoning cycle;
in particular function selectIntention (part of the Agent class) which is called
from the applySelInt method. Similarly, in the Gwendolen language this could
be done in the selectIntention from the AILAgent class by extending the
SelectIntentionHeuristic interface. The most challenging part is trying to
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incorporate some level of fairness in order to prioritise the hierarchy of respon-
sibilities while still avoiding starvation of intention stacks. There are different
ways of tackling this scheduling problem, and one option would be to look at
this as a multi-resource allocation problem (e.g., the work in [15]) where differ-
ent types of stacks (intended means created from responsibilities, environment
reaction, proactive goals, etc.) can be seen as different types of resources.

Another important aspect is the communication between agents that is re-
quired for keeping the agents’ responsibility bases up to date. This is particularly
important if in the application domain the number of recommended agents for
a responsibility is strict (i.e., it has maximum limit). A direct implementation
of our approach requires some level of centralisation about updates to agents
responsibility bases or a period of negotiation/argumentation to ensure that the
information is consistent across all agents. This is especially important when
backup agents receive a message about a responsibility being dropped, since
otherwise without some synchronous behaviour it can be possible that multiple
backup agents will become active at the same time (same time here refers to the
period of time before these agents receive a message from each other updating
the number of active agents). Again there are many ways to solve this which
depends on the constraints of the application domain, but for example one pos-
sibility is to add a centralised shared list of active agents for each responsibility
as well as a backup list, and then consume from the backup list in FIFO order.

5 Conclusion

In this paper we have extended the traditional operational semantics of rational
agents to include an individual agent view of forward-looking responsibilities.
This improves the reliability of responsibility-aware agents on two fronts: (i)
introducing a hierarchy of responsibilities allows us to reason about the partial
order relation by extending the intention stack selection function to prioritise
more important responsibilities, which leads to improving the reliability of the
system; and (ii) adding the notion of shared responsibilities which is realised
through agent communication and it is used to coordinate agents so that if an
active agent drops a responsibility and as a result the number of recommended
agents is not met, then one of the backup agents will become active.

There are many different ways of extending our approach in future work.
In this paper we focussed on a rather explicit definition of how rational agents
reason about responsibilities, but much freedom is left to the user of the lan-
guage (e.g., when to adopt a responsibility); it could be interesting to investigate
reasoning about responsibility at a more meta level in regards to how responsibil-
ities relate to each other, such as conflicts; perhaps exploring recent advances in
argumentation for agents [21, 17]. Such feature would also better justify adding
support for the dynamic creation/deletion of responsibilities at runtime, which
we did not consider for this paper. An efficient implementation in existing agent-
based programming languages would also serve to better demonstrate the use-
fulness of our approach in practice.
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