3,743 research outputs found

    New class of compounds have very low vapor pressures

    Get PDF
    Magnesium hexahydrate tetrachlorometallates are 50-volume-percent water, have a high melting point and possess a low vapor pressure. These new compounds are relatively noncorrosive, thermally stable, and water soluble but not hygroscopic. They may have potential applications as cooling fluids

    Comment on "microscopic theory of network glasses"

    Full text link
    Calorimetric experiments on network glasses provide information on the ergodicity (landscape) temperature of supercooled liquids and can be compared with a recent theory developed by Hall and Wolynes [PRL90, 085505 (2003)]Comment: 2 pages, 2 EPS figures RevTEX. to appear in Physical review Letter

    Fragility and compressibility at the glass transition

    Get PDF
    Isothermal compressibilities and Brillouin sound velocities from the literature allow to separate the compressibility at the glass transition into a high-frequency vibrational and a low-frequency relaxational part. Their ratio shows the linear fragility relation discovered by x-ray Brillouin scattering [1], though the data bend away from the line at higher fragilities. Using the concept of constrained degrees of freedom, one can show that the vibrational part follows the fragility-independent Lindemann criterion; the fragility dependence seems to stem from the relaxational part. The physical meaning of this finding is discussed. [1] T. Scopigno, G. Ruocco, F. Sette and G. Monaco, Science 302, 849 (2003)Comment: 4 pages, 2 figures, 2 tables, 33 references. Slightly changed after refereein

    The viscous slowing down of supercooled liquids as a temperature-controlled superArrhenius activated process: a description in terms of frustration-limited domains

    Full text link
    We propose that the salient feature to be explained about the glass transition of supercooled liquids is the temperature-controlled superArrhenius activated nature of the viscous slowing down, more strikingly seen in weakly-bonded, fragile systems. In the light of this observation, the relevance of simple models of spherically interacting particles and that of models based on free-volume congested dynamics are questioned. Finally, we discuss how the main aspects of the phenomenology of supercooled liquids, including the crossover from Arrhenius to superArrhenius activated behavior and the heterogeneous character of the α\alpha relaxation, can be described by an approach based on frustration-limited domains.Comment: 13 pages, 4 figures, accepted in J. Phys.: Condensed Matter, proceedings of the Trieste workshop on "Unifying Concepts in Glass Physics

    Interface free energies in p-spin glass models

    Full text link
    The replica method has been used to calculate the interface free energy associated with the change from periodic to anti-periodic boundary conditions in finite-dimensional p-spin glass models in the phase which at mean-field level has one-step replica symmetry breaking (1RSB). In any finite dimension the interface free energy is exponentially small for a large system. This result implies that in finite dimensions, the 1RSB state does not exist, as it is destroyed by thermal excitation of arbitrarily large droplets. The implications of this for the theory of structural glasses are discussed.Comment: 4 page

    Liquid-liquid phase transition in Stillinger-Weber silicon

    Full text link
    It was recently demonstrated that the Stillinger-Weber silicon undergoes a liquid-liquid first-order phase transition deep into the supercooled region (Sastry and Angell, Nature Materials 2, 739 (2003)). Here we study the effects of perturbations on this phase transition. We show that the order of the liquid-liquid transition changes with negative pressure. We also find that the liquid-liquid transition disappears when the three-body term of the potential is strengthened by as little as 5 %. This implies that the details of the potential could affect strongly the nature and even the existence of the liquid-liquid phase.Comment: 13 page

    Dynamic Transitions in a Two Dimensional Associating Lattice Gas Model

    Full text link
    Using Monte Carlo simulations we investigate some new aspects of the phase diagram and the behavior of the diffusion coefficient in an associating lattice gas (ALG) model on different regions of the phase diagram. The ALG model combines a two dimensional lattice gas where particles interact through a soft core potential and orientational degrees of freedom. The competition between soft core potential and directional attractive forces results in a high density liquid phase, a low density liquid phase, and a gas phase. Besides anomalies in the behavior of the density with the temperature at constant pressure and of the diffusion coefficient with density at constant temperature are also found. The two liquid phases are separated by a coexistence line that ends in a bicritical point. The low density liquid phase is separated from the gas phase by a coexistence line that ends in tricritical point. The bicritical and tricritical points are linked by a critical λ\lambda-line. The high density liquid phase and the fluid phases are separated by a second τ\tau critical line. We then investigate how the diffusion coefficient behaves on different regions of the chemical potential-temperature phase diagram. We find that diffusivity undergoes two types of dynamic transitions: a fragile-to-strong trans ition when the critical λ\lambda-line is crossed by decreasing the temperature at a constant chemical potential; and a strong-to-strong transition when the τ\tau-critical line is crossed by decreasing the temperature at a constant chemical potential.Comment: 22 page

    The relationship between fragility, configurational entropy and the potential energy landscape of glass forming liquids

    Full text link
    Glass is a microscopically disordered, solid form of matter that results when a fluid is cooled or compressed in such a fashion that it does not crystallise. Almost all types of materials are capable of glass formation -- polymers, metal alloys, and molten salts, to name a few. Given such diversity, organising principles which systematise data concerning glass formation are invaluable. One such principle is the classification of glass formers according to their fragility\cite{fragility}. Fragility measures the rapidity with which a liquid's properties such as viscosity change as the glassy state is approached. Although the relationship between features of the energy landscape of a glass former, its configurational entropy and fragility have been analysed previously (e. g.,\cite{speedyfr}), an understanding of the origins of fragility in these features is far from being well established. Results for a model liquid, whose fragility depends on its bulk density, are presented in this letter. Analysis of the relationship between fragility and quantitative measures of the energy landscape (the complicated dependence of energy on configuration) reveal that the fragility depends on changes in the vibrational properties of individual energy basins, in addition to the total number of such basins present, and their spread in energy. A thermodynamic expression for fragility is derived, which is in quantitative agreement with {\it kinetic} fragilities obtained from the liquid's diffusivity.Comment: 8 pages, 3 figure

    Spinodal of supercooled polarizable water

    Full text link
    We develop a series of molecular dynamics computer simulations of liquid water, performed with a polarizable potential model, to calculate the spinodal line and the curve of maximum density inside the metastable supercooled region. After analysing the structural properties,the liquid spinodal line is followed down to T=210 K. A monotonic decrease is found in the explored region. The curve of maximum density bends on approaching the spinodal line. These results, in agreement with similar studies on non polarizable models of water, are consistent with the existence of a second critical point for water.Comment: 8 pages, 5 figures, 2 tables. To be published in Phys. Re
    corecore