573 research outputs found

    Cyber situational awareness: from geographical alerts to high-level management

    Get PDF
    This paper focuses on cyber situational awareness and describes a visual analytics solution for monitoring and putting in tight relation data from network level with the organization business. The goal of the proposed solution is to make different security profiles (network security officer, network security manager, and financial security manager) aware of the actual network state (e.g., risk and attack progress) and the impact it actually has on the business tasks, making clear the relationships that exist between the network level and the business level. The proposed solution is instantiated on the ACEA infrastructure, the Italian company that provides power and water purification services to cities in central Italy (millions of end users

    A Review and Characterization of Progressive Visual Analytics

    Get PDF
    Progressive Visual Analytics (PVA) has gained increasing attention over the past years. It brings the user into the loop during otherwise long-running and non-transparent computations by producing intermediate partial results. These partial results can be shown to the user for early and continuous interaction with the emerging end result even while it is still being computed. Yet as clear-cut as this fundamental idea seems, the existing body of literature puts forth various interpretations and instantiations that have created a research domain of competing terms, various definitions, as well as long lists of practical requirements and design guidelines spread across different scientific communities. This makes it more and more difficult to get a succinct understanding of PVA’s principal concepts, let alone an overview of this increasingly diverging field. The review and discussion of PVA presented in this paper address these issues and provide (1) a literature collection on this topic, (2) a conceptual characterization of PVA, as well as (3) a consolidated set of practical recommendations for implementing and using PVA-based visual analytics solutions

    What-if analysis: A visual analytics approach to Information Retrieval evaluation

    Get PDF
    This paper focuses on the innovative visual analytics approach realized by the Visual Analytics Tool for Experimental Evaluation (VATE2) system, which eases and makes more effective the experimental evaluation process by introducing the what-if analysis. The what-if analysis is aimed at estimating the possible effects of a modification to an Information Retrieval (IR) system, in order to select the most promising fixes before implementing them, thus saving a considerable amount of effort. VATE2 builds on an analytical framework which models the behavior of the systems in order to make estimations, and integrates this analytical framework into a visual part which, via proper interaction and animations, receives input and provides feedback to the user. We conducted an experimental evaluation to assess the numerical performances of the analytical model and a validation of the visual analytics prototype with domain experts. Both the numerical evaluation and the user validation have shown that VATE2 is effective, innovative, and useful

    The CLAIRE visual analytics system for analysing IR evaluation data

    Get PDF
    In this paper, we describe Combinatorial visuaL Analytics system for Information Retrieval Evaluation (CLAIRE), a Visual Analytics (VA) system for exploring and making sense of the performances of a large amount of Information Retrieval (IR) systems, in order to quickly and intuitively grasp which system configurations are preferred, what are the contributions of the different components and how these components interact together

    Strip Planarity Testing of Embedded Planar Graphs

    Get PDF
    In this paper we introduce and study the strip planarity testing problem, which takes as an input a planar graph G(V,E)G(V,E) and a function γ:V→{1,2,…,k}\gamma:V \rightarrow \{1,2,\dots,k\} and asks whether a planar drawing of GG exists such that each edge is monotone in the yy-direction and, for any u,v∈Vu,v\in V with γ(u)<γ(v)\gamma(u)<\gamma(v), it holds y(u)<y(v)y(u)<y(v). The problem has strong relationships with some of the most deeply studied variants of the planarity testing problem, such as clustered planarity, upward planarity, and level planarity. We show that the problem is polynomial-time solvable if GG has a fixed planar embedding.Comment: 24 pages, 12 figures, extended version of 'Strip Planarity Testing' (21st International Symposium on Graph Drawing, 2013

    Bootstrapping DSGE models

    Get PDF
    This paper explores the potential of bootstrap methods in the empirical evalu- ation of dynamic stochastic general equilibrium (DSGE) models and, more generally, in linear rational expectations models featuring unobservable (latent) components. We consider two dimensions. First, we provide mild regularity conditions that suffice for the bootstrap Quasi- Maximum Likelihood (QML) estimator of the structural parameters to mimic the asymptotic distribution of the QML estimator. Consistency of the bootstrap allows to keep the probability of false rejections of the cross-equation restrictions under control. Second, we show that the realizations of the bootstrap estimator of the structural parameters can be constructively used to build novel, computationally straightforward tests for model misspecification, including the case of weak identification. In particular, we show that under strong identification and boot- strap consistency, a test statistic based on a set of realizations of the bootstrap QML estimator approximates the Gaussian distribution. Instead, when the regularity conditions for inference do not hold as e.g. it happens when (part of) the structural parameters are weakly identified, the above result is no longer valid. Therefore, we can evaluate how close or distant is the esti- mated model from the case of strong identification. Our Monte Carlo experimentations suggest that the bootstrap plays an important role along both dimensions and represents a promising evaluation tool of the cross-equation restrictions and, under certain conditions, of the strength of identification. An empirical illustration based on a small-scale DSGE model estimated on U.S. quarterly observations shows the practical usefulness of our approach

    An identification and testing strategy for proxy-SVARs with weak proxies

    Full text link
    When proxies (external instruments) used to identify target structural shocks are weak, inference in proxy-SVARs (SVAR-IVs) is nonstandard and the construction of asymptotically valid confidence sets for the impulse responses of interest requires weak-instrument robust methods. In the presence of multiple target shocks, test inversion techniques require extra restrictions on the proxy-SVAR parameters other those implied by the proxies that may be difficult to interpret and test. We show that frequentist asymptotic inference in these situations can be conducted through Minimum Distance estimation and standard asymptotic methods if the proxy-SVAR can be identified by using `strong' instruments for the non-target shocks; i.e. the shocks which are not of primary interest in the analysis. The suggested identification strategy hinges on a novel pre-test for the null of instrument relevance based on bootstrap resampling which is not subject to pre-testing issues, in the sense that the validity of post-test asymptotic inferences is not affected by the outcomes of the test. The test is robust to conditionally heteroskedasticity and/or zero-censored proxies, is computationally straightforward and applicable regardless of the number of shocks being instrumented. Some illustrative examples show the empirical usefulness of the suggested identification and testing strategy

    Relaxing the Constraints of Clustered Planarity

    Full text link
    In a drawing of a clustered graph vertices and edges are drawn as points and curves, respectively, while clusters are represented by simple closed regions. A drawing of a clustered graph is c-planar if it has no edge-edge, edge-region, or region-region crossings. Determining the complexity of testing whether a clustered graph admits a c-planar drawing is a long-standing open problem in the Graph Drawing research area. An obvious necessary condition for c-planarity is the planarity of the graph underlying the clustered graph. However, such a condition is not sufficient and the consequences on the problem due to the requirement of not having edge-region and region-region crossings are not yet fully understood. In order to shed light on the c-planarity problem, we consider a relaxed version of it, where some kinds of crossings (either edge-edge, edge-region, or region-region) are allowed even if the underlying graph is planar. We investigate the relationships among the minimum number of edge-edge, edge-region, and region-region crossings for drawings of the same clustered graph. Also, we consider drawings in which only crossings of one kind are admitted. In this setting, we prove that drawings with only edge-edge or with only edge-region crossings always exist, while drawings with only region-region crossings may not. Further, we provide upper and lower bounds for the number of such crossings. Finally, we give a polynomial-time algorithm to test whether a drawing with only region-region crossings exist for biconnected graphs, hence identifying a first non-trivial necessary condition for c-planarity that can be tested in polynomial time for a noticeable class of graphs
    • …
    corecore