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Abstract

This paper explores the potential of bootstrap methods in the empirical evalua-
tion of dynamic stochastic general equilibrium (DSGE) models and, more gener-
ally, in linear rational expectations models featuring unobservable (latent) compo-
nents. We consider two dimensions. First, we provide mild regularity conditions
that su¢ ce for the bootstrap Quasi-Maximum Likelihood (QML) estimator of the
structural parameters to mimic the asymptotic distribution of the QML estimator.
Consistency of the bootstrap allows to keep the probability of false rejections of the
cross-equation restrictions under control. Second, we show that the realizations of
the bootstrap estimator of the structural parameters can be constructively used
to build novel, computationally straightforward tests for model misspeci�cation,
including the case of weak identi�cation. In particular, we show that under strong
identi�cation and bootstrap consistency, a test statistic based on a set of real-
izations of the bootstrap QML estimator approximates the Gaussian distribution.
Instead, when the regularity conditions for inference do not hold as e.g. it happens
when (part of) the structural parameters are weakly identi�ed, the above result is
no longer valid. Therefore, we can evaluate how close or distant is the estimated
model from the case of strong identi�cation. Our Monte Carlo experimentations
suggest that the bootstrap plays an important role along both dimensions and rep-
resents a promising evaluation tool of the cross-equation restrictions and, under
certain conditions, of the strength of identi�cation. An empirical illustration based
on a small-scale DSGE model estimated on U.S. quarterly observations shows the
practical usefulness of our apprach.
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1 Introduction

Dynamic stochastic general equilibrium (DSGE) models are linear(ized) rational expec-
tations models currently used by central banks and academicians to evaluate macro-
economic policies and to predict the stance of the business cycle. These models are
stylized representations of the economy and are misspeci�ed in several dimensions (An
and Schorfheide, 2007). They are typically treated by econometricians as restricted
but parametrically incomplete representations of the actual data (Diebold et al. 1998).
DSGE models imply highly nonlinear restrictions on the state space representation they
generate. These restrictions, denoted �cross-equation restrictions�(CER) hereafter, are
the �hallmark�of rational expectations models (Hansen and Sargent, 1980, 1981) and
represent the �natural�metric through which these models should be evaluated empir-
ically (Hansen, 2014). In the frequentist setting, DSGE models are usually rejected
when evaluated through the CER.

Following the original intuition of Mankiw and Shapiro (1987) who focused on or-
thogonality restrictions, Bekaert and Hodrick (2001) have shown that in rational expec-
tations models, commonly employed tests of the CER based on standard asymptotic
approximations may lead to severe size distortions and power losses in �nite samples.
In particular, the empirical size of these tests tends to exceed markedly the chosen
signi�cance level, inducing practitioners to falsely conclude that their models are too
simple to capture the complex probabilistic nature of the data.

As is well known, the bootstrap, when correctly implemented, is an important de-
vice for improving upon the �nite sample size properties of asymptotic tests (Horowitz,
2001).1 Cho and Moreno (2006) and Bårdsen and Fanelli (2015) have exploited boot-
strap methods for testing the CER implied by small-scale New-Keynesian DSGEmodels,
documenting substantial �nite-sample size improvements under the null. Unfortunately,
these authors consider the restrictive case where all endogenous variables of the system
are observed (or can be easily proxied by observables) and their dynamic properties
can be approximated by �nite-order vector autoregressions (VAR), while it is now well
known that VAR representations with a �nite number of lags are the exception rather
than the rule in DSGE models (Ravenna, 2007; Franchi and Vidotto, 2013; Franchi and
Paruolo 2015). More crucially, both Cho and Moreno (2006) and Bårdsen and Fanelli
(2015) do not assess whether the regularity conditions which permit standard inference
�generically denoted with the term �strong identi�cation�in the following �are valid.
Conversely, the recent literature suggests that �sample�or �weak� identi�cation prob-
lems, de�ned as cases where the likelihood function of the system does not fully respect
the usual regularity conditions necessary for standard inference, are an important issue
in DSGE models. See Canova and Sala (2009), Dufour et al. (2009, 2013), Kleibergen
and Mavroeidis (2009), Mavroeidis (2005, 2010), Guerron-Quintana et al. (2013), An-

1 In macroeconometric analysis, bootstrap methods are typically used either to build con�dence bands
for impulse response functions computed in structural vector autoregressions (Kilian, 1998), or to obtain
con�dence intervals for the structural parameters of dynamic macro models (Cho and Moreno, 2006).
They can also be conveniently use to draw inferences on the long run relationships among economic
variables, see Cavaliere et al. (2012), Cavaliere et al. (2015a) and Boswijk et al. (2015). Only seldom
they have been used to improve the small sample performance of tests of the CER in linear(ized) rational
expectations models.
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drews and Mikusheva (2015), Qu (2014) and Castelnuovo and Fanelli (2015), among
others.

In the current literature, little is known about the asymptotic properties of bootstrap
methods in DSGE models and how to implement these methods to test the CER.
Moreover, little is known on how the bootstrap performs in practice and nothing is
known about the performance of the bootstrap in weakly identi�ed DSGE models. In
this paper we �ll the gap and explore the potential of bootstrap methods in the empirical
evaluation of DSGE models, along at least two dimensions.

First, we develop a (time-domain) bootstrap-based approach for quasi-likelihood
ratio (QLR) tests of the CER implied by DSGE models and, more generally, by lin-
ear(ized) rational expectations models involving unobservable (latent) components. To
do so, we extend Sto¤er and Wall�s (1991) nonparametric bootstrap approach for state
space models to the case of DSGE models. In the case of strong identi�cation, we
generalize and strengthen Sto¤er and Wall�s (1991) results. In particular, we relax the
conditions used by Sto¤er and Wall�s (1991) to show that the bootstrap quasi-maximum
likelihood (QML) estimator of the structural parametes replicates the asymptotic dis-
tribution of the QML estimator, and prove formally that the restricted bootstrap (i.e.,
with the null hypothesis under investigation being imposed in estimation) is consistent.
In this scenario, the asymptotic distribution of the QML estimator of the structural pa-
rameters can be estimated accurately by the bootstrap. Bootstrap con�dence intervals
for the structural parameters and for impulse responses can be built and interpreted in
the conventional way. Importantly, not only the (either standard or bootstrap) QLR
test for the CER is asymptotically pivotal and chi-square distributed, but the bootstrap
tends to reduce the discrepancy between actual and nominal probabilities of type-I er-
ror. It turns out that the bootstrap in DSGE models (and, generally, in state space
models) has the potential to attenuate the over-rejection phenomenon that characterizes
tests of the CER when �rst-order asymptotic approximations are used.

Second, inspired by the work of Zhan (2014) who uses the bootstrap in intrumental
variable regressions to detect weak instruments, we show the novel result that the boot-
strap can also be implemented in order to assess how far the estimated DSGE model is
from the case of strong identi�cation. Our starting point is that, when the regularity
conditions for standard likelihood-based inference are not met �as it happens e.g. under
weak identi�cation in some part of the parameter space �the asymptotic distribution
of the QML estimator of the structural parameters is no longer Gaussian. Andrews and
Cheng (2012) develop a general non-standard asymptotic theory for nonlinear models
and extremum estimators which covers cases where lack of identi�cation and/or weak
identi�cation occurs in part of the parameter space. Unfortunately, they assume the
validity of a parameterization of the model which is not always easy to check for all
DSGE models of interest. Despite this, we show that even in these cases the bootstrap
is still useful and can potentially be used to detect some types of misspeci�cation, in-
cluding weak identi�cation.2 A simple, �descriptive�indicator of weak identi�cation is

2Because in weakly identi�ed DSGE model we do not have asymptotically pivotal estimators and test
statistics, the common wisdom is that the bootstrap �does not work�. While the fact that the bootstrap
does not work under non-standard conditions is not always necessarily true (see e.g. Cavaliere et al.
2015b for an example), our intuition is that the distribution of the bootstrap QML estimator of the
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given by empirical �distance�between the analytical standard errors associated with the
QML estimates of the structural parameters and the bootstrap standard errors. Indeed,
in strongly identi�ed models, the bootstrap standard errors estimate consistently, con-
ditionally on the original data, the asymptotic standard errors, while this result is no
longer true when standard inference does not apply. More important, we propose a test
statistic, based on an arbitrary number, say ~B, of realizations of the bootstrap QML
estimator, to test the hypothesis that the model is strongly identi�ed against a generic
alternative of failure of the regularity conditions for standard inference. The test statis-
tic is essentially a standard normality test statistic, which is therefore straightforward
to compute in practice. We derive su¢ cient conditions on the number of bootstrap
repetitions ~B for the test statistic to have a well-de�ned asymptotic distribution under
the null of strong identi�cation. In summary, we can use the bootstrap replicates of
the QML estimator of the structural parameters together with simple normality tests
in order to evaluate how close or distant is the estimated DSGE model from the case
of strong identi�cation.

In practice, our approach requires (i) the estimation of the state space representa-
tion associated with the DSGE model on the original sample, with and without the
CER, (ii) the computation of the QLR test for the CER, and (iii) the application of
a (non)parametric bootstrap algorithm which imposes the null of the CER. Our boot-
strap algorithm provides: (a) the bootstrap p-value associated with the QLR test and
bootstrap standard errors for the estimated structural parameters, (b) an estimate of
the distribution of the bootstrap QML estimator of the structural parameters and (c)
an estimate of the distribution of the bootstrap QML estimator of the parameters of the
state space representation of the DSGE model without the CER imposed. The boot-
strap distributions in (b) and possibly in (c) are then analyzed by standard normality
tests. We discuss how the information in (a)-(b)-(c) can be processed to analyze the
DSGE model. In particular, we show that the proper combination of the analysis in (a)
and the diagnostics in (b) and (c) provides an exhaustive evaluation of the features of
the estimated model.

We investigate the usefulness of our approach by a set of Monte Carlo experiments
using An and Schorfheide�s (2007) small-scale monetary DSGE model as laboratory.
Further Monte Carlo studies based on the workhorse autoregressive moving average
process of order one (ARMA(1,1)) and Andrews and Mikusheva�s (2015) DSGE model
are con�ned in a Technical Supplement (Angelini et al., 2016). We also provide an
empirical illustration based on the estimation of An and Schorfheide�s (2007) model on
U.S. quarterly data. Overall, our results lead us to three considerations. First, when
all regularity conditions for standard inference are at work, the bootstrap improves
the �nite sample properties of estimators and tests in DSGE models and contributes
to reduce the risk of type I errors. Second, a practitioner who combines our �descrip-
tive� indicator of weak identi�cation (based on the distance between asymptotic and
bootstrap standard errors) with our novel bootstrap-based misspeci�cation test can de-
tect weak identi�cation reasonably well. Third, when the failure of the conditions for
standard asymptotic inference coincide with the weak identi�cation of a subset of the

structural parameters is informative and useful also under weak identi�cation.
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structural parameters, we �nd that the QLR test for the CER can be undersized or
oversized depending on the speci�c model at hand, albeit not dramatically. Remark-
ably, in these cases the bootstrap still improves upon the asymptotic QLR test, in the
sense that the empirical size of the bootstrap QLR test tends to be close the chosen
nominal level. Overall, our analysis contrasts the common wisdom that the bootstrap
distributions of DSGE estimators or test statistics are not informative in the context of
weak identi�cation.

This paper is organized as follows. Section 2 introduces the reference structural
DSGE model and the underlying assumptions, and discusses its state space represen-
tations. Section 3 focuses on the QLR test for the CER. Section 3.1 introduces the
testing problem and Section 3.2 characterizes the concepts of strong and weak identi�-
cation we refer in this paper. Section 4 summarizes our bootstrap approach to DSGE
models. Section 4.1 presents the bootstrap algorithm, Section 4.2 proves its asymptotic
validity and Section 4.3 derives our novel bootstrap-based test to detect strong/weak
identi�cation. Section 4.4 frames our approach within the existing literature. Section
5 explores the �nite sample performace of our approach by some Monte Carlo simula-
tions. Section 6 illustrates how our approach works on actual data by taking An and
Schorfheide�s (2007) DSGE monetary model to U.S. quartely data. Section 7 contains
some concluding remarks. Appendix A contains technical details and proofs. The as-
sociated Technical Supplement (Angelini et al., 2016) complements the results of the
paper in several dimensions.

2 Structural model, state space representations and
assumptions

Let Zt := (Z1;t; Z2;t; � � � ; Znz ;t)0 be a nz � 1 vector of endogenous, possibly unobserved
variables at time t, which can be interpreted as deviation from corresponding steady
state values. We assume that, after log-linearization and, for t = 1; :::; T , the structural
form of the DSGE model reads as

�0Zt = �fEtZt+1 + �bZt�1 +��t (1)

�t = R�t�1 + !t , !t �WN(0;�!). (2)

In eq.s (1)-(2), �i := �i(�), i = 0; f; b are nz�nz matrices whose elements depend on the
vector of structural parameters �, � := �(�) is an nz � n! matrix of full-column rank
(n! � nz), whose elements may depend on � but which essentially selects the shocks
that enter the equations, �t is a n!�1 vector of autoregressive disturbances, R := R(�)

is an n! � n! stable diagonal matrix, !t is the n! � 1 vector of white noise structural
shocks with covariance matrix �! := �!(�). Here, !t is adapted to the sigma-�eld Ft,
where Ft is the agents�information set at time t and EtZt+1 := E(Zt+1 j Ft). The term
!t will be referred to as the vector of fundamental structural shocks, and its covariance
matrix �! can be either diagonal or non-diagonal. The initial condition Z0 are treated
as given. Finally, the true value of � is denoted by �0 and is assumed to be an interior
point of the compact parameter space P.
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The multivariate linear(ized) rational expectations model described by system (1)-
(2) nests a large class of DSGE models currently used in policy and business cycle
analysis. Our starting point is system (1)-(2) rather than its state space representation
(which is derived below), essentially because our approach can cover a general class
of linear rational expectations models used in macroeconomics and �nance. The next
example considers the prototype monetary DSGE model discussed in the literature, see
Komunjer and Ng (2011), Qu and Tkachenko (2012) and Qu (2014), among others,
which will be analyzed in detail in the next sections.

Example 1 (An and Schorfheide�s (2007) model) With a slight change of nota-
tion, An and Schorfheide�s (2007) DSGE model is given by the equations:

xt = Etxt+1 + gt � Etgt+1 �
1

�
(rt � Et�t+1 � Etzt+1); (3)

�t = �Et�t+1 + �(xt � gt); (4)

ct = xt � gt; (5)

rt = �rrt�1 + (1� �r) 1�t + (1� �r) 2(xt � gt) + "r;t , "r;t �WN(0; �2r) (6)

gt = �ggt�1 + "g;t , "g;t �WN(0; �2g) (7)

zt = �zzt�1 + "z;t , "z;t �WN(0; �2z): (8)

eq. (3) is a forward-looking output-gap equation and xt is the output gap; eq. (4) is a
purely forward-looking New-Keynesian Phillips Curve (NKPC) with slope � := �(1��)

�����2

and �t is the in�ation rate; eq. (5) is a consumption equation and ct is consumption; eq.
(6) is the monetary policy rule and rt is the policy rate; �nally, eq.s (7)-(8) maintain
that the aggregate supply (gt) and demand (zt) disturbances are autoregressive processes.
The vector of structural parameters is given by � := (� ; �; �;  1;  2; �r; �g; �z; �

2
z; �

2
g; �

2
r)
0,

dim(�) = 11. We refer to An and Schorfheide (2007) for a derivation and discussion
of the system in eq.s (3)-(8). It is seen that the consumption equation (5) does not bear
any independent information on � other that contained in the other equations, hence it
can be dropped from the structural equations without any loss of information. In terms
of the notation in eq.s (1)-(2) we have: Zt := (xt; �t; rt)0, (nz = 3), �t := (zt; gt; "r;t)

0,
!t := ("z;t; "g;t; "r;t)

0 (n! = 3) and

�0 :=

0@ 1 0 ��1

�� 1 0

�(1� �r) 2 �(1� �r) 1 1

1A , �f :=

0@ 1 ��1 0

0 � 0

0 0 0

1A

�b :=

0@ 0 0 0

0 0 0

0 0 �r

1A , � :=

0@ ��1�e (1� �g) 0

0 �� 0

0 �(1� �r) 2 1

1A (9)

R :=

0@ �e 0 0

0 �g 0

0 0 0

1A , �! :=

0@ �2e 0 0

0 �2g 0

0 0 �2r

1A :
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The derivation of the rational expectations solution of system (1)-(2) and the associ-
ated state space representation in �minimal form�is discussed in detail in the Technical
Supplement. We assume that a unique and stable solution exists.

Assumption 1 (Determinacy) Given system (1)-(2), �0 is an interior point of the
determinacy region PD of the compact parameter space P, PD � P.

Assumption 1 implies that in correspondence of �0, the stochastic process that solves
system (1)-(2) is covariance stationary. We strengthen this condition by postulating that
it is also ergodic. Moreover, it depends neither on extra parameters other than �, nor
on additional stochastic shocks other than the fundamental shocks !t, see Lubik and
Schorfheide (2003, 2004), Fanelli (2012) and Castelnuovo and Fanelli (2015). We prefer
to rule out indeterminate equilibria because the occurrence of extra parameters and
shocks other than fundamental shocks complicates identi�cation issues considerably.3

Let yt := (y1;t; y2;t; � � � ; yny ;t)0 be the ny � 1 vector of (de-meaned) observed variables.
Under Assumption 1, the so-called ABCD form associated with the determinate

solution of the DSGE model in eq.s (1)-(2) can be expressed in the form (see Technical
Supplement)

Zm;t
nm�1

= A(��)
nm�nm

Zm;t�1
nm�1

+ B(��)
nm�n!

!t
n!�1

(10)

yt
ny�1

= C(��)
ny�nm

Zm;t�1
nm�1

+ D(��)
ny�n!

!t
n!�1

(11)

where Zm;t is the nm-dimension sub-vector of Zt that contains the candidate �minimal�
states of the system, A(��), B(��), C(��) and D(��) are matrices of parameters that
depend on � through the relationship �� = g(�), where g(�) is a nonlinear di¤erentiable
vector function and �� can be interpreted as a vector of �reduced form�coe¢ cients that
depend nonlinearly on � under the CER. Obviously, ��0 = g(�0). We come back on
the role of �� at the end of this section and in Section 3. Assumption 1 ensures that
the matrix A(��) = A(g(�)) in eq. (10) is stable4, but this does not necessarily imply
that A(��) is also invertible. In most applications, however, it is found that A(��) is
invertible. Throughout the paper we also impose, without loss of generality, that A(��)
is non-singular.

The ABCD form in eq.s (10)-(11) is the candidate minimal state space representation
associated with the DSGE model. It is minimal if and only if the system is controllable
and observable, i.e. if the following rank conditions are valid

rank(C0(��0)) = nm = rank(O0(��0)) (12)

3 In principle, however, our approach can be extended to the case of DSGE models with indeterminate
equilibria. All that we need is the associated (minimal) identi�ed state space representation of the
system, see e.g. Lubik and Schorfheide (2004).

4Throughout the paper we use the term �stable�to denote a matrix that has all eigenvalues inside
the unit circle in the complex plane.
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where

C0(��) := (B(��); A(��)B(��); :::; A(��)
nm�1B(��)) , O

0(��):=

0BBB@
C(��)

C(��)A(��)
...

C(��)A(��)
nm�1

1CCCA
are respectively the controllability (C0) and observability (O0) matrices.

Assumption 2 (Minimality) The state-space system (10)-(11) is minimal, i.e. such
that the rank condition in eq. (12) is valid.

In general, under Assumptions 1�2, the state-space system (10)-(11) admits a sta-
tionary VARMA-type representation for yt, see e.g. Hannan and Deistler (1988). The
minimality condition mimics the left-coprime condition typically imposed on (or assume
in) VARMA processes (see e.g. Lütkepohl, 2005, p. 452). For cases where the D(��)
matrix in eq.s (10)-(11) is square (ny = n!), it is possible to derive conditions that
ensure the fundamentalness of the ABCD form (Fernández-Villaverde et al. 2007), i.e.
a representation where the state Zm;t is fully recoverable from y1; :::; yt, and conditions
for the existence of a �nite-order VAR representation for yt (Ravenna, 2007; Franchi and
Vidotto, 2013; Franchi and Paruolo, 2015). We do not impose any of these conditions,
in the sense that the bootstrap approach we present below, other than not requiring the
existence of �nite-order VAR representation for yt, can also be applied to speci�cations
and adaptations of system (1)-(2) that potentially accommodate foresight phenomena
about technology and government spending, anticipated shocks and non-fundamental
representations along the lines of e.g. Leeper et al. (2013).

Our last assumption regards the (local) identi�ability of the structural parameters
� from system (10)-(11). Following Komunjer and Ng (2011), � is identi�ed if and only
if

rank(M(��0)) = dim(�0) + n
2
m + n

2
! (13)

where

M(�) :=

0BBBBBB@

@vecA(��)
@�0

A(��)
0 
 Inm � Inm 
A(��) 0n2m�n2!

@vecB(��)
@�0

B(��)
0 
 Inm In! 
B(��)

@vecC(��)
@�0

�Inm 
 C(��) 0nynm�n2!
@vecD(��)

@�0
0nynm�n2m In! 
D(��)

@vech�!(��)
@�0

0 1
2
ny(ny+1)�n2m �2d+n!(�!(��)
 In!)

1CCCCCCA .

Here d+nu := (d0n!dn!)
�1d0n! is the Moore-Penrose inverse of the duplication matrix

dn! , i.e. the n
2
! � 1

2n!(n! + 1) matrix such that dn!vech(�!) = vec(�!), and it is
maintained that the matrices A(��); B(��); C(��) and D(��) have continuos �rst and
second derivatives with respect to �.

Assumption 3 (Identification) The state-space system (10)-(11) is �locally identi-
�ed�, i.e. the functions vec(A(g(�))), vec(B(g(�))), vec(C(g(�)) and vec(D(g(�))) have
continuos �rst and second derivatives with respect to � and the rank condition in eq.
(13) is valid in a neighborhood N�0 of �0.
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Komunjer and Ng (2011) show that for the case ny � n!, the information matrix
of the system is nonsingular if and only if the condition in eq. (13) is satis�ed. Using
the terminology in Canova and Sala (2009), Assumption 3 is a statement about the
�population�identi�cation of the DSGE model. However, identi�cation problems in a
system of variables featuring highly nonlinear restrictions might also involve the rela-
tionship between the structural parameters and the sample objective function, which
might display �small�curvature in certain regions of the parameter space. We clarify
these issues in the next sections.

Finally, we consider the counterpart of the state space representation in eq.s (10)-
(11) which does not incorporate the CER. Indeed, in the next sections a state space
representation of the DSGE model which does not incorporate the CER is needed in
order to compute QLR tests for the CER.5 Guerron-Quintana et al. (2013) have shown
that it is in principle possible to couple the ABCD form with a counterpart where �� is
replaced with a vector of parameters, say �, which collapses to �� when the CER are
imposed, see also Angelini and Fanelli (2015). We therefore posit that, associated with
the ABCD form in eq.s (10)-(11), it exists a state space representation for Zm;t and yt,
given by

Zm;t
nm�1

= A(�)
nm�nm

Zm;t�1
nm�1

+ B(�)
nm�n!

!ut
n!�1

(14)

yt
ny�1

= C(�)
ny�nm

Zm;t�1
nm�1

+ D(�)
ny�n!

!ut
n!�1

, t = 1; :::; T; (15)

where !ut is an n! � 1 vector of white noise structural shocks with diagonal covariance
matrix �!u , and � is a vector of coe¢ cients such that dim(�) = dim(��), dim(�) >
dim(�).

Assumption 4 (State space representation without the CER) System (14)-(15)
is such that:
(4.i) the matrix A(�) is stable and invertible, and the functions vec(A(�)); vec(B(�));
vec(C(�)) and vec(D(�)) have continuous �rst and second derivatives with respect to
�;
(4.ii) is in minimal form, in the sense that the condition in eq. (12) is valid once ��0 is
replaced with �0, where �0 is the true value of � and is an interior point of the compact
parameter space P�;
(4.iii) is identi�ed in the sense that the condition in eq. (13) is valid once ��0 is replaced
with �0.

While system (10)-(11) characterizes the �rst- and second-order moments of the data
under the CER, together with the (assumed �xed) initial conditions for the state, system
(14)-(15) under Assumption 4.i-4.iii provides a complete characterization of �rst- and
second-order moment properties of the data net of the parametric restrictions stemming

5Finding an �unrestricted�state space representation of the DSGE model is not a trivial task because
of the di¢ culties associated with the speci�cation of an identi�ed minimal state space form that plays
the same role reduced form models have in the context of simultaneous systems of equations, see e.g.
Schorfheide (2010), Komunjer and Ng. (2011) and Guerron-Quintana et al. (2013).
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from the theory. Also in this case, the stochastic process that generates the observables,
fytg, is covariance stationary.

3 Test of the cross-equation restrictions

The ABCD form in eq.s (10)-(11) and the system (14)-(15) can be regarded as the
state space interfaces of the DSGE model. The ABCD form in eq.s (10)-(11) is nested
within system (14)-(15), in the sense that system (14)-(15) collapses to the ABCD form
in eq.s (10)-(11) once the elements of the vector � are replaced with the elements of the
vector �� = g(�), where g(�) is such that the Jacobian (r���)0 �

@g(�)
@�0

has full-column
rank, dim(�), in a neighborhood of �0. Our Technical Supplement discusses in detail
the relationship between �, �� and �:

We have all the ingredients to compute a QLR test of the CER implied by the
DSGE model. In Section 3.1 we brie�y address the testing problem and in Section 3.2
we characterize the concepts of strong and weak identi�cation and their consequences
on inference.

3.1 Testing problem

We consider the testing problem

H0 : � = �� = g(�) against H1 : � 6= �� (16)

by a QLR test. The nullH0 incorporates the CER. The state space representation of the
DSGE model under H0 is given by system (10)-(11). Instead, the state space representa-
tion of the DSGE model under H1 corresponds to system (14)-(15). To compute a QLR
test of the CER it is necessary to maximize the likelihood associated with both systems.
Let `T (�) and `T (��) = `T (g(�)) be the log-likelihoods of the DSGE model under H1
and H0, respectively, and let �̂T := argmax�2P� `T (�) and �̂T := argmax�2PD `T (��)

(�̂�;T = g(�̂T )) the QML estimators of � and � (��). These estimation problems are
based on Gaussian innovation errors and the Kalman-�lter and are considered in the
Technical Supplement. For the purposes of the present analysis, it is important to re-
call that under H0, the innovation form representation (Anderson and Moore, 1979) in
(steady-state form) associated with the ABCD form in eq.s (10)-(11) is summarized by
the expressions

Ẑm;t+1jt = A(��)Ẑm;tjt�1 + Kt(��) �
0
t (17)

yt = H+(��)Ẑm;tjt�1 + �
0
t (18)

where Kt = Kt(��) is the Kalman gain, H
+(��) := C(��)A(��)

�1 and Ẑm;tjt�1 :=

E(Zm;t j Fyt�1), where F
y
t := �(yt; :::; y1) � Ft is the information set based on the

observable variables up to time t. �0t are the innovation errors with covariance matrix
��0;t, t = 1; :::; T . We use the superscript �0� for �0t and ��0;t to remark that the
representation in eq.s (17)-(18) is obtained under the null H0 which imposes the CER.
Under the alternative H1, the innovation form representation is similar to system (17)-
(18) but �� needs to be replaced with �, hence �

u
t := yt�H+(�)Ẑm;tjt�1, and the implied

covariance matrix is ��u;t; t = 1; :::; T .
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The QLR test for the CER is given by

QLRT (�̂T ):=� 2[`T (�̂�;T )� `T (�̂T )]: (19)

The asymptotic properties of the tests statistics QLRT (�̂T ) are intimately related to
the asymptotic properties of �̂T (�̂�;T ) and �̂T and these crucially depend on whether
the regularity conditions for inference are valid in the estimated DSGE model.

3.2 Strong and weak identification: characterization

While the DSGE model is unidenti�ed if the rank condition in Assumption 3 fails, the
validity of Assumption 3 does not necessarily rule out cases in which the log-likelihood
of the system `T (g(�)) does not satisfy the regularity conditions permitting �standard
inference�, where by this term we denote the situation where �̂T is consistent and as-
ymptotically Gaussian, with quadratic forms derived from �̂T being asymptotically �2-
distributed. More precisely, the DSGE model can satisfy the local identi�cation condi-
tion in Assumption 3 at � = �0, but `T (g(�)) might exhibit local maxima (and minima)
and nearly �at surfaces in some directions of the parameter space. This concept is
often termed, borrowing terminology from the literature on instrumental variables and
generalized methods of moments, �weak identi�cation� (Staiger and Stock, 1997; and
Stock and Wright, 2000). The same might occur to `o;T (�):

When the standard regularity conditions for inference hold (see the Technical Sup-
plement, Section TS.4.2), we can think about the scenario in which Assumptions 1-3
are also valid for a �y in PD that replaces �0 and such that

�̂T
p! �y (20)

where �y = �0 under H0; furthermore, and

T 1=2ZT
d! N

�
0dim(�)�1; Idim(�)

�
; (21)

where T 1=2ZT := T 1=2�I1=2
�̂T ;T

(�̂T � �y). The quantity �I�̂T ;T in ZT is a consistent, (a.s.)
positive de�nite estimator of the inverse of the covariance matrix

V�y :=

�
I2D
�y;1

�
IOP
�y;1

��1
I2D
�y;1

��1
(22)

where, with r�`�;T (�y) := @`�;T (�)
@�

���
�=�y

and r2��`�;T (�y) :=
@2`�;T (�)
@�@�0

���
�=�y

,

IOP
�y;1:= lim

T!1

1

T
IOP
�y;T

, IOP
�y;T

:=E
�
r�`�;T (�y)�r�`�;T (�y)0

�
(23)

I2D
�y;1:= lim

T!1

1

T
I2D
�y;T

, I2D
�y;T

:=� E
�
r2��`�;T (�y)

�
: (24)

The (locally) identi�ed parameter vector �y plays in eq.s (20)-(22) the role of �pseudo-
true�value of the structural parameters which minimizes the Kullback-Leibler informa-
tion criterion (White, 1982). Under standard regularity conditions, the QML estimator

11



�̂T converges to �y when the CER are imposed in estimation. When H0 in eq. (16) is
valid, �y = �0 in eq.s (20)-(22) and V�y = V�0 reads as the asymptotic covariance matrix
of T 1=2(�̂T ��0), i.e. V�0 := limT!1Var(T 1=2�̂T ). Furthermore, if the innovation errors
that characterize the Kalman �lter algorithm are Gaussian and H0 holds, both matri-
ces IOP�0;T and I

2D
�0;T

derived from eq.s (23)-(24) for �y = �0 characterize the system�s
information matrix and V�0 collapses to the expression V�0 := (I2D�0;1)

�1. The quantity:

�IOP
�̂T ;T

:=
1

T

TX
t=1

r�`t(�̂T )�r�`t(�̂T )0 , (25)

known as �incremental observed information�and the quantity:

�I2D
�̂T ;T

:= � 1
T

TX
t=1

r2��`t(�̂T ), (26)

known as �observed information�(evaluated at �̂T ), are both consistent (interchangeable)
estimates of the system�s information matrix. It turns out that one can use

�I�̂T ;T =
�I2D
�̂T ;T

�
�IOP
�̂T ;T

��1
�I2D
�̂T ;T

(27)

for consistent estimation of the information matrix under H0.
Similar considerations apply to the estimation of the parameters in � under As-

sumption 4 and H1, see Watson (1989). It follows that under Assumptions 1-4 (and the
regularity conditions (TS-A.i)-(TS-A.viii) reviewed in the Technical Supplement), stan-
dard arguments imply that the test statistic QLRT (�̂T ) in eq. (19) is asymptotically
�2-distributed with k = dim(�) � dim(�) degree of freedom (henceforth �2k) when H0
is true and diverges under H1. Thus, the null H0 is rejected when QLRT (�̂T ) � c�

�2k
,

where c�
�2k
is the �-level cut-o¤ point associated with the �2k-distribution and 0 < � < 1

is the pre-�xed nominal signi�cance level (or type-I error probability) of the test. No-
tice, however, that also in strongly identi�ed DSGE models, the �2k distribution might
provide a poor approximation in �nite samples.

Conversely, when standard regularity conditions do not hold as e.g. in weakly
identi�ed DSGE models, the consistency result in eq. (20) and the asymptotic nor-
mality result in eq. (21) are no longer guaranteed, see, among others, Andrews and
Cheng (2012) and Andrews and Mikusheva (2015). Andrews and Mikusheva (2015)
show through examples that under weak identi�cation, the (appropriately normalized)
quadratic variation of the score converges to a �xed positive de�nite matrix, while the
Hessian converges in distribution to a random matrix. Thus, under weak identi�cation,
one can expect large disparities between di¤erent estimators of information also if the
model respects White�s (1982) information matrix equality. Also in the case where
the innovations errors are Gaussian, it is not necessarily true that the matrices in eq.s
(25) and (26) evaluated at � = �0 are consistent (and interchangeable) estimates of the
information matrix. Andrews and Mikusheva (2015) observe that in these cases �it is
unwise to estimate the information matrix using an estimator of �� such as e.g. the
quantities �I2D

�̂T ;T
and �IOP

�̂T ;T
in eq.s (25)-(26).
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Summing up, the class of weakly identi�ed DSGE models we have in mind in this
paper, must not be considered misspeci�ed in the �conventional�sense discussed in e.g.
Inoue et al. (2015), An and Shorfheide (2007, Section 3.1) and Angelini and Fanelli
(2015). Rather, weak identi�cation can be associated with situations in which the
convergences in eq.s (20)-(21) are no longer valid and suitably normalized versions of
the matrix �I2D�0;T converge weakly to a random matrix. Conventionally, throughout the
paper we use the terms �strong identi�cation�and �strongly identi�ed DSGE model�to
denote the situations in which the regularity conditions that permit standard inference
on � are valid. Conversely, failure of these conditions, as it happens e.g. in �weakly
identi�ed�DSGE models, does not permit the �conventional�asymptotic expansions of
the likelihood, with the consequence that irrespective of whether the CER are true (i.e.
H0 is valid) or not (i.e. H1 is valid), the test statistics T 1=2ZT deviates asymptotically
from the Gaussian distribution.

The di¤erent asymptotic behaviour of the statistic T 1=2ZT under strong identi�ca-
tion and when strong identi�cation fails is at the basis of our bootstrap approach to
the evaluation of DSGE models.

4 Bootstrap approach

We take the point of view of a practitioner who is concerned with (i) the estimation
of the structural parameters of the DSGE model in eq.s (1)-(2) and (ii) the empirical
evaluation of the estimated model by the testing the hypothesis H0 against H1 in eq.(16).
We assume that, given the estimation sample y1; :::; yT , estimation of � (��) (under H0)
and � (under H1) has been completed and the QML estimates �̂T (�̂�;T = g(�̂T )) and

�̂T are available. The practitioner does not know a priori whether the DSGE model
meets all regularity conditions that permit standard inference.

Our bootstrap approach is based on the following idea. After the QLR test in eq.
(19) is computed on the sample y1; :::; yT , we construct its bootstrap analog, denoted by
QLR�T (�̂

�
T ). This can be done by a standard bootstrap algorithm as the one described

in Section 4.1 below. Henceforth, with ���we denote bootstrap analogs of estimators
and statistics; for instance, �̂

�
T denotes the estimator of � obtained on the bootstrap

sample y�1; :::; y
�
T (the construction of the bootstrap sample is detailed below). In order

to compute the bootstrap p-value associated to the QLR test, it is required to generate
an arbitrary number of bootstrap samples, B say, under the null of the DSGE model,
i.e. with the CER in H0 imposed (that is, with � �xed at the QML estimate �̂T ).
Then, on each generated bootstrap sample, the state space representation of the model
is estimated both under the CER (H0) and unrestrictedly (H1). In Section 4.2 we prove
that in strongly identi�ed DSGE models the bootstrap is consistent. Thus, conditional
on the original data, �̂

�
T should be normally distributed for large values of T and B.

Accordingly, each element of �̂
�
T is expected (conditional on the original data) to conform

to the Gaussian distribution in large samples. In DSGE models where the regularity
condition for standard inference fail, instead, �̂

�
T may not conform to the Gaussian

distribution. In Section 4.3 we discuss how these considerations can be used to design
a bootstrap-based misspeci�cation test for the estimated DSGE model. In Section 4.4
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we compare our approach with the existing literature.

4.1 Bootstrap algorithm

We employ a nonparametric �restricted bootstrap�algorithm (see e.g. Davidson and
MacKinnon, 1999), where the bootstrap samples are generated using the the parameter
estimates �̂T obtained under H0. The QLR test statistic, QLRT (�̂T ), computed as in eq.
(19) is stored, along with �̂T . Our procedure is adapted from Sto¤er and Wall (1991), see
also Cavanaugh and Shumway (1997), and is described through the following algorithm.
Here, steps 1�4 de�ne the bootstrap sample, the bootstrap parameter estimators and
related bootstrap QLR statistic; steps 5�7 describe the numerical computation of the
bootstrap p-value associated to the bootstrap QLR test.6

Algorithm (Restricted bootstrap)

1. Given the innovation residuals �̂0t := yt�H+(�̂�;T )Ẑm;tjt�1 and the estimated covari-

ance matrices �̂�0;t = ��0;t(�̂�;T ) produced by the estimation of the DSGE model
under the CER (H0), construct the standardized innovations as

ê0t :=�̂
�1=2
�0;t

�̂0;ct , t = 1; :::; T; (28)

where �̂�1=2
�0;t

is the inverse of the square-root matrix of �̂�0;t and �̂
0;c
t , t = 1; :::; T ,

are the centered residuals �̂0;ct := �̂0t � T�1
PT
t=1 �̂

0
t ;

2. Sample, with replacement, T times from ê01; ê
0
2; :::; ê

0
T to obtain the bootstrap sample

of standardized innovations e�1; e
�
2; :::; e

�
T ;

3 Mimicking the innovation form representation of the DSGE model in eq.s (17)-(18),
the bootstrap sample y�1; y

�
2; :::; y

�
T is generated recursively by solving, for t =

1; :::; T; the system 
Ẑ�m;t+1jt
y�t

!
=

 
A(�̂�;T ) 0nm�ny
H+(�̂�;T ) 0ny�ny

! 
Ẑ�m;tjt�1
y�t�1

!
+

 
Kt(�̂�;T )�̂

1=2
�0;t

�̂
1=2
�0;t

!
e�t

(29)
with initial condition Ẑ�m;1j0 = Ẑm;1j0;

4 From the generated pseudo-sample y�1; y
�
2; :::; y

�
T , estimate the DSGE model under

H0 obtaining the bootstrap estimator �̂
�
T (�̂

�
�;T = g(�̂

�
T )) and the associated log-

likelihood `�T (�̂
�
�;T ), and estimate the DSGE model under H1 obtaining the boot-

strap estimator �̂
�
T and the associated log-likelihood `

�
T (�̂

�
T ); the bootstrap QLR

test for the CER is de�ned as:

QLR�T (�̂
�
T ):=� 2[`�T (�̂

�
�;T )� `�T (�̂

�
T )]; (30)

6Matlab codes used in the simulation study (Section 5), in the empirical illustration (Section 6) and
in the Technical Supplement are available upon request.
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5 Steps 2-4 are repeated B times in order to obtain B bootstrap realizations of �̂T and
�̂T , say f�̂

�
T :1; �̂

�
T :2; :::; �̂

�
T :Bg and f�̂

�
T :1; �̂

�
T :2; :::; �̂

�
T :Bg, and the B bootstrap re-

alizations of the associated bootstrap QLR test, fQLR�T :1, QLR�T :2; :::; QLR�T :Bg,
where QLR�T :b := QLR�T (�̂

�
T :b), b = 1; :::; B;

6 The bootstrap p-value of the test of the CER is computed as

bp�T;B:=Ĝ�T;B(QLRT (�̂T )) , Ĝ�T;B(x) := B�1
BX
b=1

IfQLR�T :b > xg; (31)

I f�g being the indicator function;

7 The bootstrap QLR test for the CER at the 100�% (nominal) signi�cance level rejects
H0 if bp�T;B � �.

Some remarks are in order.

Remark 4.1 Although the bootstrap algorithm features a �restricted�resampling scheme,
the procedure can be easily adapted to the case of an �unrestricted�resampling scheme,
where the bootstrap samples are generated using unrestricted parameter estimates, i.e.
without imposing the CER. In this case, in step 1 one may consider and resample the
residuals and associated covariance matrices obtained from the estimation of the state
space model under H1, i.e. �̂ut := yt �H+(�̂T )Ẑm;tjt�1 and �̂�u;t = ��u;t(�̂T ), and then

replace �̂�;T with �̂T in step 3.

Remark 4.2 The algorithm is �nonparametric�in the sense that in step 1 the bootstrap
innovations are obtained as random draws from the standardized residuals ê0t , t =
1; :::T ; that is, the so-called nonparametric �i.i.d. bootstrap� is used to generate the
innovations. However, if the normality hypothesis holds true, one may alternatively
employ a parametric version of the bootstrap algorithm, which simply requires ignoring
steps 1 and 2 and starting from the step 3, with the e�t now taken as independent
random draws from the N(0ny�1; Iny) distribution.

Remark 4.3 An alternative approach to our i.i.d. bootstrap is the so-called �wild
bootstrap� (Wu, 1986; Liu, 1988; Mammem, 1992), which allows to mimick possible
(conditional and unconditional) heteroskedasticity patterns present in the the original
data; see e.g. Goncalves and Kilian (2004) for the case of stationary autoregressions and
Boswijk et al. (2016) for hypothesis testing in multivariate models. In our framework,
the wild bootstrap shocks would be generated in Step 3 as

e�w;t := �̂0tw
�
t , t = 1; :::; T

where w�t is an i.i.d. scalar sequence with 0 mean, unit variance, and �nite fourth order
moments. Using the wild bootstrap, the standardization of the residuals in (28) (Step
1) is no longer necessary (since, conditionally on the original data, E�(e�w;te

�0
w;t) = �̂0t �̂

00
t ),

and consequently the recursion in (29) can be replaced by the simpler recursion 
Ẑ�m;t+1jt
y�t

!
=

 
A(�̂�;T ) 0nm�ny
H+(�̂�;T ) 0ny�ny

! 
Ẑ�m;tjt�1
y�t�1

!
+

�
Kt(�̂�;T )

Iny

�
e�w;t ,
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for t = 1; :::; T , again initializated at Ẑ�m;1j0 = Ẑm;1j0.

Remark 4.4 In the restrictive case where D(��) in eq.s (10)-(11) is a square (ny = n!)
and invertible matrix, a �nite-order VAR representation for yt exists (see Section 2).
In this case, the bootstrap algorithm can be adapted such that the VAR representation
of the DSGE model is used to estimate the parameters and generate the residuals used
in the resampling scheme, see e.g. Bårdsen and Fanelli (2005) and Cho and Moreno
(2006).

4.2 Asymptotic validity

Assume that H0 in eq.(16) holds and �y = �0. Let T 1=2Z�T := T 1=2�I1=2
�̂T ;T

(�̂
�
T � �̂T ) be the

bootstrap analog of T 1=2ZT := T 1=2�I1=2
�̂T ;T

(�̂T ��0), where �I�̂T ;T is a consistent estimator
of the inverse of the asymptotic covariance matrix V�0 , see eq. (27). The QML estimator
�̂T , used to generate the bootstrap sample, plays in T 1=2Z�T the role of a �pseudo-true
parameter�. Random draws from �̂

�
T can be obtained through the algorithm presented in

previous section, which generates B bootstrap realizations �̂
�
T :1; :::; �̂

�
T :B. With respect

to estimation under H1, we have T 1=2UT := T 1=2�I1=2
�̂T ;T

(�̂T��0) and its bootstrap analog

T 1=2U�T := T 1=2�I1=2
�̂T ;T

(�̂
�
T � �̂T ).

Using the regularity conditions by Ljung and Caines (1979), Sto¤er and Wall (1991)
prove that their bootstrap algorithm ensures that (a) T 1=2U�T has the same asymptotic
distribution of T 1=2UT , i.e. multivariate Gaussian and (b) the bootstrap standard errors
are consistent. Sto¤er and Wall (1991) do not consider any constrained estimation
problem (hence they only focus on the case H1). In the framework of the DSGE models
considered here, � = �� = g(�) under H0, and Sto¤er and Wall�s (1991) result (a) can
be restated in the following form

�̂
�
T � �̂T

p�!p 0dim(�)�1 (32)

T 1=2Z�T
d�!p N

�
0dim(�)�1; Idim(�)

�
(33)

where �
p�!p�denotes convergence �in P �, in probability�, while �

d�!p�denotes converge in
�conditional distribution, in probability� (see Appendix A). Sto¤er and Wall�s (1991)
result (b) can be stated by:

Var�(T 1=2�̂
�
T )�Var(T 1=2�̂T )

p�!p 0dim(�)�dim(�) (34)

where Var�(�) denotes variance conditional on the original sample (see Appendix A.1).
Note that an arbitrarily accurate estimate of Var�(�̂

�
T ) can be obtained, for su¢ ciently

large B, from the bootstrap realizations �̂
�
T :1; �̂

�
T :2, ..., �̂

�
T :B as

dVar�(�̂�T ):= 1B
BX
b=1

(�̂
�
T :b � �̂

�
T )(�̂

�
T :b � �̂

�
T )
0 , �̂

�
T :=

1

B

BX
b=1

�̂
�
T :b:
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The square root of the elements on the main diagonal ofdVar�(�̂�T ) delivers the �bootstrap
standard errors�routinely reported by practitioners along with the QML estimates of
the structural parameters.

We can now establish that the bootstrap is indeed consistent in the framework of
the DSGE models considered in this paper. This result is given in the next proposi-
tion, where it is shown that the convergences in eq.s (32)-(34) hold in strongly iden-
ti�ed DSGE models and, in addition, that the bootstrap is consistent. The following
notation is used in the proposition: for x := (x1; :::; xdim(�))

0 2 Rdim(�) and KT :=

T 1=2ZT = (K1;T ; :::;Kdim(�);T )
0, GT (x) := P (K1;T � x1; :::;Kdim(�);T � xdim(�)) denotes

the cumulative distribution function (CDF) of KT ; moreover, for K�
T := T 1=2Z�T =

(K�
1;T ; :::;K

�
dim(�);T )

0, G�T (x) := P �(K�
1;T � x1; :::;K

�
dim(�);T � xdim(�)) denotes the CDF

of K�
T , conditional on the original sample.

Proposition 1 (Consistency) Consider the DSGE model in eq.s (1)-(2) with ABCD
representation in eq.s (10)-(11), Assumptions 1-3, the set of regularity conditions (A.i*)-
(A.viii*) in the Appendix. Assume further that the CER are true, i.e. H0 is valid and
�y = �0. Then the following results holds as T !1:
(i) �̂

�
T satis�es the convergences in eq.s (32)-(34);

(ii)
sup

x2Rdim(�)
jG�T (x)�G1(x)j

p! 0 (35)

where G1(x) = �(x) and �(x) is the CDF of the standardized multivariate Gaussian
distribution.

Proof: See Appendix A.

Some remarks are in order.

Remark 4.5 Proposition 1 generalizes Sto¤er and Wall�s (1991) main result on state
space models along two dimensions. First, it addresses issues related to a constrained
(under H0) estimation problem. Second, other than formalizing the fact that the as-
ymptotic distribution of T 1=2Z�T := T 1=2�I1=2

�̂T ;T
(�̂
�
T � �̂T ) is multivariate Gaussian as the

asymptotic distribution of T 1=2ZT := T 1=2�I1=2
�̂T ;T

(�̂T � �0) and that the bootstrap stan-

dard errors consistently estimate the analytic standard errors of the QML estimator, it
further proves the consistency of the bootstrap. Thus, Proposition 1 ensures that one
can build and interpret the bootstrap con�dence intervals for the structural parameters
and for the impulse responses in the �conventional�way.

Remark 4.6 By the same arguments, it is possible to prove that under the analog of the
regularity conditions of Proposition 1, also the statistic T 1=2U�T := T 1=2�I1=2

�̂T ;T
(�̂
�
T � �̂T ),

which is the bootstrap analog of T 1=2UT := T 1=2�I1=2
�̂T ;T

(�̂T � �0), is asymptotically

multivariate Gaussian in strongly identi�ed DSGEmodels. Therefore, by using standard
arguments it can be shown that in strongly identi�ed DSGE models, the asymptotic
distribution of the bootstrap QLR test is �2k under the null H0.
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In the next section we show how the consistency result of Proposition 1 can be
exploited to design a novel, computational straightforward, bootstrap-based mispeci�-
cation test for an estimated DSGE model.

4.3 A novel bootstrap misspecification test

Other than producing the bootstrap p-value for the QLR test of the CER (as well
as standard errors for the estimated parameters), the bootstrap algorithm presented
in section 4.1 can also play a relevant role in assessing how �close or distant� is the
estimated DSGE model from the case where all regularity conditions for QML-based
inference hold. In order to do so, we propose an econometric framework based on the
sampling distribution of the bootstrap statistics.

Speci�cally, consider a bootstrap statistic of the form K�
T := T 1=2Z�T , temporarily

assumed to be scalar, and assume that under the stated regularity conditions K�
T con-

verges to a random variable Z, whose CDF is denoted by �Z(�). That is, the CDF of
K�
T , say G

�
T (�), satis�es G�T (x)��Z (x)!p 0 uniformly in x as T !1; see Proposition

1 above. Let ~B � B denote be the number of bootstrap repetitions we use to build
our misspeci�cation test, where B is the total (arbitrarily large) number of bootstrap
repetitions exploited in the bootstrap algorithm of Section 4.1. We aim at evaluating
the regularity conditions underlying the DSGE model by testing whether the deviation
of the distribution of K�

T - as estimated over the set of ~B bootstrap replications -
from its theoretical asymptotic limit �Z are large enough so that the claim that K�

T is
asymptotically distributed as Z may reasonably be rejected. If Z is the Gaussian, this
can be done, under some appropriate conditions, by applying a simple normality test
on the ~B bootstrap realizations K�

T :1; :::;K
�
T : ~B
.

It is important to stress that for T �xed, the distribution of K�
T (conditional on the

original data) will in general deviate from the normal, even in cases where asymptotic
normality holds. Therefore, our idea is to evaluate whether such deviations are large
enough such that the hypothesis of asymptotic normality of the bootstrap statistic can
safely be rejected. If this is the case, then one could interpret the result as signalling
a misspeci�cation of the model. For the rest of the discussion, we assume that Z is
standard normal (and �Z is therefore the CDF of a N(0; 1) random variable), although
the reasoning may be extended to any given distribution.7

Given ~B � B, we can estimate G�T (x) (assumed to be strictly positive) by the
empirical distribution function of K�

1:1; :::;K
�
1: ~B

as

G�
T; ~B
(x):= ~B�1

X ~B

b=1
IfK�

T :b � xg

where K�
T :b, b = 1; :::; ~B, are i.i.d. draws from G�T (x), the conditional distribution

of K�
T , given the original sample. For any �xed x 2 R, it holds that, as ~B ! 1,

G�
T; ~B
(x)! G�T (x) (almost surely) and, by the CLT,

~B1=2VT (x)
�1=2(G�

T; ~B
(x)�G�T (x))

d! N(0; 1) (36)

7For instance, one could potentially apply this approach to the (asymptotically �2) bootstrap QRL
test statistic for the CER.
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where VT (x) := G�T (x)(1 � G�T (x)) can consistently be estimated (as ~B ! 1) by
VT; ~B(x) := G�

T; ~B
(x)(1�G�

T; ~B
(x)); see e.g. Shorack and Wellner (1986).

Consider now the statistic SNT; ~B(x) :=
~B1=2VT; ~B(x)

�1=2(G�
T; ~B
(x)��Z(x)), i.e. the

(normalized) distance between the estimated (over ~B repetitions) bootstrap distribution
G�
T; ~B
(x) and its theoretical asymptotic distribution arising when standard regularity

conditions hold.8 We can decompose SNT; ~B(x) as follows:

SNT; ~B(x) =
~B1=2VT; ~B(x)

�1=2(G�
T; ~B
(x)�G�T (x)) + ~B1=2VT; ~B(x)

�1=2(G�T (x)� �Z(x)):
(37)

By the CLT in eq. (36), the �rst term on the right-hand side of eq. (37) will always
converge, as ~B ! 1, to a N (0; 1) variate. Regarding the leading factor of the second
term, G�T (x)� �(x), under our regularity conditions it is reasonable to assume that it
admits a standard Edgeworth expansion, such that G�T (x) � �(x) = Op

�
T 1=2

�
. This

implies that for any x, the term T 1=2VT; ~B(x)
�1=2(G�T (x)��Z(x)) in the right-hand side

of eq. (37) is of Op(1). Therefore, ~B1=2VT; ~B(x)
�1=2(G�T (x) � �(x)) = Op

�
~B1=2T�1=2

�
and converges to zero provided ~B = o(T ) as both B and T diverges. That is, SN ~B(x)

is asymptotically N(0; 1) under the condition

~B�1 + T�1 + ~BT�1 ! 0. (38)

Conversely, if the consistency result of Proposition 1 does not hold and GT (x) does not
converge (in probability) to �Z (x), then the second term on the right hand side of eq.
(37) does not vanishes asymptotically and SN ~B(x) diverges at the rate of

~B, leading
to a rejection of the hypothesis that G�T (x) converges to �Z (x) as T ! 1. This is
for instance what we expect to happen in weakly identi�ed DSGE models. Obviously,
these arguments can easily be extended to the case where K�

T := T 1=2Z�T is a dim(�)�1
vector.

The asymptotic behaviour of SN ~B(x) under strong identi�cation as well as under
cases where the regularity conditions for standard inference fail, suggests a computa-
tional straightforward bootstrap-based misspeci�cation test for DSGE models. The
test can be constructed as follows. For a proper choice of ~B (which is takes as small
relatively to T , see the condition in (38)) and for any i = 1; :::;dim(�), we can apply
standard normality tests to the sequence of bootstrap repetitions �̂

�
i;T :1; �̂

�
i;T :2; ::::; �̂

�
i;T : ~B

obtained using the bootstrap algorithm of Section 4.1. The same can be done, for
any j = 1; :::;dim(�), on the bootstrap repetitions �̂

�
j;T :1, �̂

�
j;T :2,..., �̂

�
j;T : ~B obtained

from the estimation of the DSGE model under H1, i.e. without imposing the CER.
Then, one would expect not to reject normality on �̂

�
i;T :1; �̂

�
i;T :2; ::::; �̂

�
i;T : ~B and on �̂

�
j;T :1,

�̂
�
j;T :2,..., �̂

�
j;T : ~B in DSGE models where all regularity conditions for standard inference

hold. Conversely, one would expect to reject normality on �̂
�
i;T :1; �̂

�
i;T :2; ::::; �̂

�
i;T : ~B and/or

8 It would be tempting to use a Kolmogorov-Smirnov approach, i.e. to consider a functional such as
KST; ~B := supx2R j ~B1=2VT (x)

�1=2(G�
T; ~B

(x) � G�
T (x))j. Unfortunately, in general a bootstrap statistic

based on i.i.d. resampling has, for any �nite sample size T , a discrete distribution with TT atoms. Since
G�
T is discontinuous, KS ~B does not have in general a pivotal limiting distribution.
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on �̂
�
j;T :1, �̂

�
j;T :2,..., �̂

�
j;T : ~B when the estimated DSGE model does not meet the regular-

ity conditions for standard inference, as it happens e.g. under weak identi�cation (or
unidenti�cation).

Remark 4.7 The tests of (asymptotic) normality have to be computed using ~B boot-
strap realizations �̂

�
T :1; �̂

�
T :2; ::::; �̂

�
T : ~B (�̂

�
T :1, �̂

�
T :2,..., �̂

�
T : ~B) out of the (iid) sequence of B

bootstrap realizations �̂
�
T :1; �̂

�
T :2; ::::; �̂

�
T :B (�̂

�
T :1; �̂

�
T :2; :::; �̂

�
T :B) employed to compute the

bootstrap p-value for the QLR test of the CER. In order to control size, ~B is chosen
to satisfy the condition in eq. (38) and therefore should be small compared to B. This
might entail a loss of information �hence, of power �because B � ~B repetitions are
discarded. For the puropose of improve power and make use of all the available infor-
mation, we can partition the original B bootstrap realizations into N non-overlapping
groups, each of size ~B (such that N ~B � B), and run N (stochastically independent,
given the original data) normality tests at the 100�0% nominal signi�cance level, one on
each group. It is then reasonable to design a decision rule which summarizes the infor-
mation from all N tests. Speci�cally, let p1, ...,pN be the p-values associated with the N
individual normality tests and consider the following decision rule: reject normality if
mini=1;:::;N fpig � �0. Trivial calculations based on the stochastic independence of the
N groups suggests that if each individual test is run at the 100�0% nominal signi�cance
level, then the overall type I error probability is given by � = 1� (1� �0)N . Therefore
one can easily select �0 such that � matches the desired overall signi�cance level. The
simulation results reported in Section 5 and in the Technical Supplement show that this
indeed leads to appreciable power gains in small samples when some of the structural
parameters are weakly identi�ed.

We explore the empirical performance of the suggested bootstrap-based misspeci�-
cation test for DSGE models in Sections 5 and 6 below.

4.4 Connections with the literature

To our knowledge, only few papers in the literature use bootstrap methods in DSGE
models. As already observed in the introduction, Chow and Moreno (2006) and Bård-
sen and Fanelli (2015) exploit the potential of the bootstrap in the empirical analysis
of dynamic structural models but limit their attention to the case in which all state
variables are observed and do not address the consistency of the bootstrap. Bekaert
and Hodrick (2001) and Fanelli and Palomba (2011) show empirically that bootstrap
methods lead to substantial �nite-sample size improvements in tests of the CER in the
class of present value models used in �nancial and macroeconomic analysis, but do not
prove consistency of the bootstrap. Moreover, the class of DSGE models we consider
in this paper in not covered by their analysis.

Fève et al. (2009) suggest a minimum-distance Structural VAR (SVAR) approach for
DSGE models where in a �rst step the model is estimated and tested by the overidenti�-
cation test delivered by the minimum-distance program, and in a second-step simulated
versions of the overidenti�cation test are obtained by bootstrapping the SVAR residu-
als. Hence, in Fève�s et al. (2009) bootstrap resampling involves the residuals of the
auxiliary SVAR and not the residuals of the DSGE model. Similarly, Le et al. (2011)
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combine the bootstrap with indirect inference methods for DSGE models. Compared
to this literature, the distinctive feature of our approach is that we apply the boot-
strap to the state space representation of the DSGE model in order to test the CER
and to evaluate how �close�or �distant�the estimated model is from the case of strong
identi�cation.

Focusing on the more general setup of state space models, the only study which
addresses the problem of bootstrap maximum likelihood estimation in state space mod-
els is the already mentioned article by Sto¤er and Wall (1991); see also Berkowitz and
Kilian (2000) and Sto¤er and Wall (2004). Cavanaugh and Shumway (1997) exploite
Sto¤er and Wall�s (1991) algorithm to develop a bootstrap-based corrected variant of
Akaike Information Criterion (AIC) to small sample state-space model selection. We
borrow from Sto¤er and Wall (1991) the design of our bootstrap algorithm, but we
generalize and strengthen their results by relaxing the conditions they use to prove
that the bootstrap QML estimator has the same asymptotic distribution of the QML
estimator. We further prove that the bootstrap is consistent and tends to reduce the
tendency of QLR tests to overreject the CER. Moreover, we show that the bootstrap
can be used constructively to detect misspeci�cation in state space models, including
the case of weak identi�cation. In this respect, Zhan (2014) is the only example where
the use of the bootstrap is suggested as a diagnostic tool to detect �weak instruments�
in instrumental variables regressions.

Finally, there exist only few studies in the bootstrap literature where the applica-
bility of the bootstrap is discussed in situations where not all regularity conditions for
inference are assumed to hold. While the results in Moreira et al. (2004) suggest that
the bootstrap might be valid in some weak identi�cation cases, more recently Dovonon
and Gonçalves (2014) address the bootstrap estimation of the standard test of overi-
denti�cation restrictions in the generalized method of moments framework when the
model is globally identi�ed but the rank condition is not valid, a situation referred to
as lack of �rst-order local identi�cation.

5 Monte carlo study

In this section we investigate the empirical performance of the bootstrap using An
and Schorfheide�s (2007) small-scale model introduced in the Example 1 of Section
2 as data generating process (DGP). A detailed (population) identi�cation analysis
of this model may be found in e.g. Komunjer and Ng (2011). The �full� vector of
parameters is �:=(� ; �; �;  1;  2; �r; �g; �z; �

2
z; �

2
g; �

2
r)
0 (dim(�)=11). Komunjer and Ng

(2011) have shows that one of the three parameters of the policy rule ( 1;  2; �r) needs to
be restricted in order to achieve (population) identi�cation, see also Qu and Tkachenko
(2012). Therefore, the policy parameter  2 (the Central Bank�s long run response to
the output gap) will be �xed at its DGP value and treated as known. Also the discount
factor � will be �xed at its DGP value and treated as known. The DGP values of �
are reported in Table 2 of Komunjer and Ng (2011). In this model it is di¢ cult to
characterize precisely on a priori grounds which are the candidate weakly identi�ed
parameters besides the policy parameter  1. Our bootstrap misspeci�cation approach
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may play an important role in detecting weak identi�cation in this model.
We consider two cases, denoted AS-DGP1 and AS-DGP2, respectively. In the for-

mer, it is assumed that the unknown parameters the econometrician must infer from
the data are contained in �1:=(�; �r; �

2
g)
0 (dim(�1)=3), while all other elements of � are

�xed at their DGP values. In the latter it is assumed that the unknown parameters
are in �2 := (�;  1; �r; �

2
e; �

2
g; �

2
r)
0 (dim(�2) = 6), all other elements of � being �xed at

their DGP values. In both cases, the speci�cation of the matrices �0, �f , �b, � and 	
in the structural representation of the DSGE model is given in Example 1 and the im-
plied state space representation without the CER imposed involves the vector �, where
dim(�) = 13. AS-DGP1 represents our benchmark for the strong identi�cation case,
while we expect to �nd identi�cation issues in model AS-DGP2, where the policy rule
parameters  1; �r and �

2
r , according to an extensive literature, are di¢ cult to identify

from the data; see e.g. Mavroeidis (2010) and Castelnuovo and Fanelli (2015).
We generate samples of length T = 100 from the minimal ABCD form associated

with the DSGE model M = 500 times, assuming that the vector of fundamental shocks
!t := ("e;t; "g;t; "r;t)

0 (n! = 3) is Gaussian with diagonal covariance matrix. The initial
conditions Zm;0 are �xed to zero. For each replication, a sample of T +200 observations
is actually generated and the �rst 200 observations are then discarded. We then analyze
(i) the empirical size of the QLR test for the CER, (ii) the bootstrap standard errors
and the bootstrap-adjusted rejection frequency of the QLR test for the CER obtained
with the algorithm discussed in Section 4.1 and (iii) the empirical performance of our
bootstrap misspeci�cation approach discussed in Section 4.3 for di¤erent choices of
~B � B. In (iii) we complement the analysis by applying the procedure summarized in
Remark 4.7.

Since the data are simulated assuming a Gaussian distribution for the shocks, for
the rest of this section we use �ML�and �LR�in place of �QML�and �QLR�, respectively.

5.1 AS-DGP1

Results relative to AS-DGP1 are summarized in Table 1 (T = 100) (see the Technical
Supplement for the case T = 250), which summarizes the situation one would expect to
�nd in strongly identi�ed DSGE models. Averaging over the MC replications, the ML
estimates of the structural parameters and Hessian-based standard errors are substan-
tially similar to the bootstrap ML estimates and bootstrap standard errors, as expected
in the case where the regularity conditions hold. When asymptotic critical values taken
from the �2k distribution, k = dim(�) � dim(�1) = 10, are employed, the rejection fre-
quency (empirical size) of the LR test for the CER is 8% as opposed to the 5% nominal
signi�cance level. The bootstrap is more conservative, with an associated rejection fre-
quency around 2%. Therefore, the bootstrap seems to counterbalance the tendency of
the standard LR test to overreject the CER, although it leads to a slightly conservative
test.

Focusing on the bootstrap misspeci�cation approach, in the bottom panel of Table 1
we report rejection frequencies obtained using Jarque and Bera�s (1987) univariate test
of normality of the ~B i.i.d. realizations of the bootstrap estimators;9 we also report the

9We also applied Shapiro and Wilk�s (1965) normality test obtaining substantially similar results.
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rejection frequencies associated with the procedure summarized in Remark 4.7. Recall
from Section 4.1 that according to the theory, the number of bootstrap repetitions ~B
( ~B � B) used for testing (asymptotic) normality of the bootstrap estimator, should be
small compared to T , see eq. (38). Hence, in order to evaluate how the condition in eq.
(38) impacts on the �nite sample performance of the test, we consider di¤erent choices
of ~B � B. Normality tests are then computed at the 5% nominal signi�cance level. We
observe that for values of ~B su¢ ciently small relative to T , the rejection frequencies of
the tests �uctuate around the nominal size. On the other hand, as ~B increases relative
to T , the rejection frequency of the test tends to exceed the nominal signi�cance level,
showing that choosing ~B too large can lead to spurious rejections of the hypothesis of
asymptotic normality of the bootstrap estimators. In summary, these results con�rm
that, when ~B is not unreasonable large relative to T , our misspeci�cation test based
on normality tests delivers a good empirical size coverage in strongly identi�ed DSGE
models.

5.2 AS-DGP2

Results relative to AS-DGP2 are summarized in Table 2 (see the Technical Supplement
for the case T = 250). As expected, compared to the previous case Table 2 depicts a
more involved situation. After averaging over the MC replications, the ML estimates
of the structural parameters and their bootstrap counterparts have similar magnitudes.
However, let us consider the distance between the asymptotic and the bootstrap stan-
dard errors, which can be regarded as a �descriptive� indicator of weak identi�cation.
It can be clearly noticed that for the policy rule parameters  1 and �r there are non-
negligible discrepancies between the Hessian-based and the bootstrap standard errors.
Such discrepancies do not vanish when the sample size is increased to T = 250 (see in
particular Table TS.12 in the Technical Supplement). Table 2 also shows that using the
asymptotic critical values taken from the �2k distribution, k = dim(�)�dim(�2) = 7, the
rejection frequency of the LR test for the CER is 7.8% as opposed to the 5% nominal
signi�cance level, while the bootstrap-adjusted rejection frequency is 3.2%.

As concerns our bootstrap misspeci�cation approach based on normality tests, from
the bottom panel of Table 2 we notice two facts. First, we observe possible identi�ca-
tion issues for the parameters � (slope of the Phillips curve) and  1 (long run policy
response to in�ation) because the rejection frequencies associated with the normality
tests of �̂�T and  ̂

�
1;T tend to exceed the 5% nominal signi�cance markedly relative to

what happens to the other parameters. Second, the rejection frequencies associated
with �̂�T and  ̂

�
1;T increase signi�cantly when the procedure summarized in Remark 4.7

is employed. Based on the evidences in Table 2, we can conclude that estimation of
�2 := (�;  1; �r; �

2
e; �

2
g; �

2
r)
0 in model AS-DGP2 is characterized by weak identi�cation

issues which can be mainly ascribed to the policy parameter  1. However, according
to our misspeci�cation tests, the deviations from standard regularity conditions do not
seem dramatic. Interestingly, despite the presence of weakly identi�ed parameters, we
report the same phenomenon noticed for the strongly identi�ed AS-DGP1 model: the
bootstrap counterbalances the tendency of the LR test to overreject the CER when
asymptotic critical values are used. The additional Monte Carlo experiments in the
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Technical Supplement con�rm this evidence.

6 Empirical illustration

In this section we apply our bootstrap approach to estimate and evaluate An and
Schorfheide�s (2007) DSGE model of Example 1 on U.S. data. We employ quarterly
observations relative to the �Great Moderation� sample 1984Q2-2008Q3, T=98. The
starting date, 1984Q2, is justi�ed by McConnell and Pérez-Quirós (2000), who �nd a
break in the variance of the U.S. output growth in 1984Q1. The ending date is instead
motivated by the fact that, with data after 2008Q3, it would be hard to identify a
�conventional�monetary policy shock with our structural model during the well known
zero lower bound (ZLB) episodes. The three observable variables in yt := (~xt; �t; Rt)0

are measured as follows. The output gap, ~xt, is computed as percent log-deviation of
the real GDP from the potential output, as estimated by the Congressional Budget
O¢ ce. The in�ation rate, �t, is the quarterly growth rate of the GDP de�ator. For
the short-term nominal interest rate, Rt, we consider the e¤ective Federal funds rate
expressed in quarterly terms (averages of monthly values). The source of the data is
the Federal Reserve Bank of St. Louis�web site.

As in the Monte Carlo study, we consider two estimable versions of the model. In
the former, denoted AS-M1, the vector of unknown parameters is �1 := (�; �r; �

2
g)
0

(dim(�1)=3) and all other structural parameters of system (3)-(8) are calibrated at the
values reported in the upper panel of Table 1 (hence they are assumed to be known by
the econometrician). In the latter, denoted AS-M2, the vector of unknown parameters
is �2 := (�;  1; �r; �

2
z; �

2
g; �

2
r)
0 (dim(�2)=6), with all other parameters characterizing

system (3)-(8) calibrated at the values reported in the upper panel of Table 1 (again,
these are assumed to be known to the econometrician). The main di¤erence between
model AS-M1 and model AS-M2 is that the latter estimates the Central Bank�s long run
response to in�ation  1 and the variance of the three fundamental shocks �

2
z; �

2
g; �

2
r from

the data, while AS-M1 treats  1 and �
2
e and �

2
r as �xed. Thus, AS-M1 is a restricted

version of AS-M2. It is worth noting that the two models share the same state space
representation (and likelihood) under H1, i.e. when the CER are not imposed.

We run some preliminary tests of no autocorrelation and heteroskedasticity in the in-
novation residuals obtained from the (Gaussian) Kalman �lter estimation of the DSGE
state space representation, both under H0 and H1. We �nd some residual heteroskedas-
ticity, especially in the measurement equation associated to the short-term interest
rate. This result suggests that also the wild-bootstrap version of our QLR test could
be considered, see Remark 4.3.

Estimation is carried out by combining the Kalman �lter with the �CMA-ES�like-
lihood maximization algorithm (Andreasen, 2010). For both models, the bootstrap
standard errors associated with the QML estimates of the structural parameters and
the bootstrap p-values associated with the LR tests for the CER are computed using
B = 999 replications, following the algorithm summarized in Section 4.1. Our mis-
speci�cation tests are instead based on ~B = 20 bootstrap realizations of the parameter
estimators and are constructed as described in Section 4.3 using Jarque and Bera�s
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(1987) normality test at the 5% nominal signi�cance level. The choice ~B = 20 is moti-
vated by the requirement in eq. (38). We complement the p-values associated with the
normality tests with the results from the procedure described in Remark 4.7.

Results are summarized in Table 3. The upper panel of Table 3 refers to model
AS-M1. We notice that in this case, the bootstrap parameter estimator �̂

�
1;T (fourth

column), calculated as (1=B)
PB
b=1 �̂

�
1;T :b, is close to the QML estimate computed on the

original sample �̂1;T (second column). The largest di¤erence is seen for the policy rule
inertia parameter �r. Similarly, the bootstrap standard errors (�fth column) are similar
to the Hessian-based standard errors (third column) and, again, the largest di¤erence
characterizes the inertia parameter �r. Thus, a descriptive�indicator of weak identi�ca-
tion �based on the di¤erence between analytic and bootstrap-based estimated standard
errors �does not signal relevant weak identi�cation issues. Using asymptotic critical
values (taken from the �2k distribution, where k=dim(�)�dim(�1)=13-3=10), the QLR
test rejects the CER at the 5% nominal signi�cance level. Instead, the (iid) bootstrap
p-value associated with the QLR test is equal to 0.053, while the wild-bootstrap p-value
is 0.147.

The (asymptotic) normality of the bootstrap estimators of the structural parame-
ters is not rejected for any parameter at the 5% nominal signi�cance level.10 We have
enough ingredients to conclude that model AS-M1 satis�es the condition for standard
asymptotic inference and, notably, is not rejected at the 5% nominal signi�cance level
when we consider the iid and wild bootstrap version of the QLR test for the CER,
while it is rejected using �rst-order asymptotics. Interestingly, our Technical Supple-
ment shows that model AS-M1 is rejected using Guerron-Quintana�s et al. (2013)
identi�cation-robust method.

The lower panel of Table 3 refers to model AS-M2. We observe that in this model
the magnitudes of the QML estimates of � (slope of the Phillips curve) and of �2g (vari-
ance of the shock in the Phillips curve) are substantially di¤erent from the magnitudes
estimated in model AS-M1. In particular, treating  1; �

2
r and �

2
z as estimable para-

meters of the DSGE model renders the magnitude of the QML estimate of the slope
parameter �̂T very large. Moreover, the QML estimate of  1 lies on the boundary of
the optimization parameter space; see the notes to Table 3 for details and condition
(A.v*) in the Appendix. Compared to model AS-M1, the discrepancy between �̂

�
2;T

(fourth column) and �̂2;T (second column) is larger and can be essentially ascribed to
the estimates of the parameters �r and �

2
g. Considering our �descriptive�indicator of

weak identi�cation, the bootstrap standard errors (�fth column) diverge substantially
from the Hessian-based standard errors (third column). Using asymptotic critical val-
ues (taken from the �2k distribution, where k=dim(�)�dim(�2)=13-6=7), the QLR test
rejects the CER at the 5% nominal signi�cance level. Also the iid bootstrap p-value
rejects the CER, while the wild-bootstrap p-value is 0.112. The di¤erence between the

10 In this empirical illustration we do not consider normality tests on the elements of �̂
�
T , i.e. on the

bootstrap ML estimators of the parameters of the DSGE model under H1. One fact to be noticed is that
the absolute value of the largest eigenvalue of the estimated matrix A(�̂T ) is 0.947, which suggests that
the system features persistent variables. In this speci�c case, the largest eigenvalue of A(�̂T ) coincides
with one of the elements of �̂T , say �̂1;T , hence it is reasonable to expect the rejection of normality for

�̂
�
1;T . Results are available upon request.
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iid and wild bootstrap can be explained by the heteroskedasticity found in the inno-
vations residuals. Asymptotic normality of the realizations of the bootstrap structural
parameter estimators is sharply rejected for �̂�T ,  ̂

�
1;T and �̂

2�
z;T at the 5% nominal signif-

icance level.11 We have clear evidence that, compared to model AS-M1, the regularity
conditions for standard inference are not respected in model AS-M2, which seems to be
a¤ected by identi�cation issues.

7 Conclusions

In this paper we have explored the potential of bootstrap methods in the empirical
evaluation of DSGE models. We have shown that with our bootstrap approach, �nite
sample inference on the CER implied by DSGE models is considerably more accurate
and the risk of false rejections can be reduced also when part of the structural parameters
are weakly identi�ed. We have further proposed a novel bootstrap misspeci�cation
approach which can be used to analyze the strength of identi�cation of the estimated
model when all other possible causes of misspeci�cation can be controlled for. This test
seems to be promising, based on the evidence produced in the paper, and straightforward
to apply. Our results contrast the common wisdom that the bootstrap is not useful in
DSGE models.

A Appendix: consistency of the bootstrap in
strongly identified DSGE models

In this Appendix, we provide heuristic proofs of Proposition 1 and Proposition 2. Our
proofs include two short preliminary sections where we �x the notation necessary to
understand the bootstrap setting and we de�ne the objective functions.

A.1 Notation

With P (�) denoting the true probability distribution of the data, we use E(�) and Var(�),
respectively, to denote expectations and variance computed under P . We use P �(�) to
denote the probability measure induced by the bootstrap, conditional on the original
sample. Expectation and variance computed under P � are denoted by E�(�) and Var�(�),
respectively. In general, with respect to the original probability measure, P �(�), E�(�)
and Var�(�) are stochastic quantities. De�ne, for any � > 0, pT := P (jj�̂T � �0jj > �)

and p�T := P �(jj�̂�T � �̂T jj > �), where �̂
�
T is the bootstrap analog of the QML estimator

�̂T , and k�k is the Euclidean norm. While with the conventional notation ��̂T ��0
p! 0�

we mean that the (deterministic) sequence fpT g converges to zero (pT ! 0) as T !1,
with the notation � �̂

�
T � �̂T

p�!p 0�, which reads �̂�
�
T � �̂T convergences in P � to 0, in

probability�, we mean that the (stochastic) sequence fp�T g converges in probability to
zero (p�T

p! 0).

11The rejection of the (asymptotic) normality of  ̂
�
1;T is not surprising. Indeed  ̂1;T lies on the

boundary of the parameter space, violating one of the conditions (see point A.v*, Appendix A) at the
basis of the Gaussian asymptotic approximation.
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Likewise, for any � > 0, de�ne sT := P (sup�2PD jQ̂T (�)�Q0(�)j > �), where Q̂T (�)
and Q0(�) are the criterion functions de�ned below, and let s�T := P �(sup�2PD jQ̂�T (�)�
Q0(�)j > �), where Q̂�T (�) is the bootstrap analog of Q̂T (�) given the original sample, see
below. While �Q̂T (�) converges uniformily in probability to Q0(�)�means that the (de-
terministic) sequence fsT g converges to zero (sT ! 0), with �Q̂�T (�) converges uniformily
in P � to Q0(�), in probability�we mean that the stochastic sequence fs�T g converges
to zero in probability (s�T

p! 0). Alternative useful notations are sup�2PD jQ̂T (�) �
Q0(�)j

p! 0 (uniform convergence in probability) and sup�2PD jQ̂�T (�) � Q0(�)j
p�!p 0

(uniform convergence in P �, in probability), respectively.
Finally, consider a scalar stochastic sequence fWT g and a random variable W , with

associated CDFs denoted by GW;T (x) := P (WT � x) and GW (x) := P (W � x). The

conventional notation �WT
d! W�means that GW;T (x) ! GW (x) for each x at which

GW (x) is continuos. Let the sequence fW �
T g be the bootstrap analog of fWT g, with

associated CDFs G�W �;T (x) := P �(W �
T � x). We say that W �

T �converges in conditional

distribution to W , in probability�, denoted by �W �
T
d�!p W�, if G�W �;T (x)

p! GW (x) for
each x at which GW (x) is continuos. Notice that if GW (�) is continuous, then the latter
convergence also implies that supx2R jG�W �;T (x) � GW (x)j

p! 0. These de�nitions can
be extended to the multivariate framework in the conventional way.

A.2 Objective functions: definitions

Consider `�;T (�) = `T (��) the essential part of the log-likelihood function associated
with the DSGE model, see Section 3.1. We de�ne the normalized log-likelihood:

Q̂T (�):=
1

T
`�;T (�) =

1

T

TX
t=1

`t(�) (A.1)

where `t(�) := l(yt j Fyt�1 ; �) = �flog det(��0;t(�))+e0t (�)0e0t (�)g, e0t (�) := �
�1=2
�0;t

(�)�0t (�)

(see Technical Supplement). The QML estimator �̂T solves �̂T := argmax�2PD Q̂T (�).
By construction, Q̂T (�) is twice continuosly di¤erentiable in a neighborhood N�0 of �0.
Associated with Q̂T (�) we have

QT (�):=E(Q̂T (�)) = E

 
1

T

TX
t=1

`t(�)

!
=
1

T

TX
t=1

E (`t(�)) = E (`t(�)) =: Q0(�) (A.2)

where the last equality holds under Assumption 1 (which implies that fytg is weakly
stationary).

In the bootstrap world, the analog of Q̂T (�) is given by

Q̂�T (�):=
1

T
`��;T (�) =

1

T

TX
t=1

`�t (�) (A.3)

where `�t (�) := l�(y�t j F
y�

t�1; �) = �flog det(��0;t(�)) + e0;�t (�)
0e0;�t (�)g, e

0;�
t (�); t =

1; :::; T; being the bootstrap Kalman �lter innovations. Obviously, �̂
�
T := argmax�2PD Q̂

�
T (�).

27



Associated with Q̂�T (�) we have its (conditional) expectation

Q�T (�):=E
�(Q̂�T (�)) = E�

 
1

T

TX
t=1

`�t (�)

!
=
1

T

TX
t=1

E� (`�t (�)) = E� (`�t (�)) =: Q
�
0(�):

(A.4)

A.3 Consistency of the bootstrap QML estimator

Throughout this section, we denote with (TS-A.j),j =i, ii, iii, iv, the regularity condi-
tions summarized in the Technical Supplement. To prove the consistency in eq. (32),
we proceed by showing that, in probability as T ! 1, we have bootstrap analogs of
(TS-A.i)-(TS-A.iv) that are valid for the criterion function Q̂�T (�) evaluated at �̂T .

We need the Lemma that follows.

Lemma A.1 (Stoffer and Wall, 1991) Under the regularity conditions (TS-A.i)-
(TS-A.iv),

Q�T (�) = Q̂T (�) for all � 2 PD

Proof: See Sto¤er and Wall (1991).
By Lemma 1, �̂T also equals argmax�2PD Q

�
0(�); hence, in the bootstrap world �̂T

is the unique maximizer of Q�0(�) in a neighborhood N�̂T of �̂T . This condition is the
bootstrap analog of (TS-A.ii), when (TS-A.ii) is restricted in a neighborhood N�y of �

y.
Also by Lemma 1, Q�0(�) is continuous in � since so is Q̂T (�). This is the bootstrap
analog of (TS-A.iii). If in the presence of stationarity (and ergodicity) f`t(�)g satis�es a
UWLLN and also the bootstrap analog f`�t (�)g satis�es a UWLLN in P � in probability,
i.e.

P �

 
sup
�2PD

���Q̂�T (�)�Q�0(�)���
!

p! 0 as T !1 ,

then, by Lemma 1,

P �

 
sup
�2PD

���Q̂�T (�)� Q̂T (�)���
!

p! 0 as T !1. (A.5)

Eq. (A.5) is the bootstrap analog of (TS-A.iv).
Summing up, we have the following bootstrap analogs of the regularity conditions

(TS-A.i)-(TS-A.iv) reported in the Technical Supplement:
(A.i*) PD is compact;
(A.ii*) �̂T is the unique maximizer of Q�0(�) in a neighborhood N�̂T of �̂T ;
(A.iii*) Q�0(�) is continuous in �;
(A.iv*) Q̂�T (�)� Q̂T (�) converges uniformily in P � in probability to 0, i.e. eq. (A.5)

holds.
It turns out that

�̂
�
T � �̂T

p�!p 0 (A.6)

where �̂
�
T := argmax�2N�̂T \P

D Q̂�T (�) and �̂T :=argmax�2N�̂T \P
D Q̂T (�). This proves

the convergence in eq. (32) of part (i) of Proposition 1.
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A.4 Asymptotic normality of the bootstrap QML estimator

Throughout this section, we denote with (TS-A.j), j =v, vi, vii, viii, the regularity
conditions summarized in the Technical Supplement. To prove the asymptotic normality
of ZT := T 1=2(�̂

�
T � �̂T ), we consider a mean value expansion of r�Q̂�T (�̂

�
T ) = 0dim(�)�1

around the QML estimator �̂T , yielding

r�Q̂�T (�̂
�
T ) = 0dim(�)�1 = r�Q̂�T (�̂T ) +r2��Q̂T (��

�
T )(�̂

�
T � �̂T )

where ���T is on the segment connecting the points �̂
�
T and �̂T of PD. Rearranging terms,

T 1=2(�̂
�
T � �̂T ) = �

n
r2��Q̂�T (��

�
T )
o�1

T 1=2r�Q̂�T (�̂T )

= �
(
T�1

TX
t=1

r2��`�t (��
�
T )

)�1
T�1=2

TX
t=1

r�`�t (�̂T ). (A.7)

To prove that the term on the right in eq. (A.7) converges to the Gaussian distri-
bution, we need a bootstrap analog of the CLT in (TS-A.vi) and we have to prove
that as T ! 1, the implied long run covariance matrix is indistinguishable from
B(�̂T ) := Var(T�1=2

PT
t=1r�`t(�̂T )). Moreover, in order to derive the limiting behav-

iour of the left term in eq. (A.7), we need a bootstrap analog of the uniform convergence
result of the Hessian matrix in (TS-A.vii), and a bootstrap analog of the nonsingularity
condition (TS-A.viii).

As concerns the bootstrap analog of (TS-A.vi), if T 1=2r�Q̂�T (�̂T ) = T�1=2
PT
t=1r�`�t (�̂T )

satis�es a CLT, we then have, with B�(�̂T ) := Var�(T�1=2
PT
t=1r�`�t (�̂T )):

T�1=2
TX
t=1

r�`�t (�̂T )
d�!p N(0dim(�)�1;B�) (A.8)

where B� :=plimT!1 B�(�̂T ). We can specialize this result using the following Lemma,
which is a reformulation of Lemma 2 in Sto¤er and Wall (1991).

Lemma A.2 (Stoffer and Wall, 1991) Consider the regularity conditions (TS-A.i)-
(TS-A.viii). With B�(�̂T ) as de�ned above and

B(�̂T ) := Var
 
T�1=2

TX
t=1

r�`t(�̂T )
!
,

it holds that
B�(�̂T )� B(�̂T )

p�!p 0:

As concerns the bootstrap analog of the uniform convergence result of the Hessian
matrix in (TS-A.vii), if similarly to

�
r2��`t(�)

	
also �for T large enough �the (station-

ary and ergodic) process
�
r2��`�t (�)

	
satis�es a UWLLN, then

sup
�2N�̂T




r2��Q̂�T (�)� E�(r2��Q̂�T (�))


 p�!p 0: (A.9)
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By Lemma A.1 we have that

E�(r2��Q̂�T (�)) = E�

 
1

T

TX
t=1

r2��`�t (�)
!
=
1

T

TX
t=1

E�
�
r2��`�t (�)

�
= E�

�
r2��`�t (�)

�
=
1

T

TX
t=1

r2��`t(�) =: AT (�)

for all � 2 PD. Therefore, since as T ! 1 we have that �̂T � �y
p�!p 0, it also holds

that, uniformly in a neighborhood of �̂T , AT (�) � A (�) !p 0, where A (�), de�ned
in the Technical Supplement, is continuous at �̂T . This result, along with (A.9), also
implies that

1

T

TX
t=1

r2��`�t (��
�
T )�A(�̂T )

p�!p 0

where A(�̂T ) can be estimated consistently by AT (�̂T ) := �T�1
PT
t=1r2��`t(�̂T ).

Summing up, we have the following bootstrap analogs of the regularity conditions
(TS-A.v)-(TS-A.viii):

(A.v*) �̂T is in int(PD) with probability tending to one as T !1;
(A.vi*) T 1=2r�Q̂�T (�̂T ) = T�1=2

PT
t=1r�`�t (�̂T ) satis�es the CLT:

T�1=2
TX
t=1

r�`�t (�̂T )
d�!p N(0dim(�)�1;B�) , B�:=B�(�̂T ), (A.10)

where B�(�̂T ) := Var�
�
T�1=2

PT
t=1r�`�t (�̂T )

�
;

(A.vii*) sup�2N�̂T




r2��Q̂�T (�)� E�(r2��Q̂�T (�))


 p�
!p 0;

(A.viii*) A(�̂T ) is nonsingular, almost surely.
Going back to the mean value expansion in eq. (A.7), we have that the �rst term

on the left is close (in P �-in probability) to A(�̂T ) because of (A.vii*)-(A.viii*) and the
result in eq. (A.6). The right-hand side term satis�es the convergence in eq. (A.10) by
(A.vi*). It follows that

[A(�̂T )�1B(�̂T )A(�̂T )�1]�1=2fT 1=2(�̂
�
T � �̂T )g

d�!p N(0dim(�)�1; Idim(�)): (A.11)

This proves the convergence in eq.s (33)-(34) of part (i) of Proposition 1. Observe that
the quantity A(�̂T )�1B(�̂T )A(�̂T )�1 in eq. (A.11) converges in probability to V�y :

The asymptotic normality in eq. (A.11) implies that the statistic K�
T := T 1=2Z�T :=

T 1=2�I1=2
�̂T ;T

(�̂
�
T � �̂T ) which has CDF G�T (x) := P �(K�

1;T � x1; :::;K
�
dim(�);T � xdim(�)) for

�nite T , converges asymptotically to G�1(x) = �(x). From Polya�s theorem we obtain
the consistency result in eq. (35) of part (ii) of Proposition 1. �
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TABLE 1. MC experiment. AS-DGP1

�0 �0  1;0  2;0 �0 �r;0 �g;0 �z;0 �2r;0 �2g;0 �2z;0
2 0.33 1.5 0.125 0.9975 0.75 0.95 0.90 0.04 0.36 0.09

T=100 Monte Carlo Bootstrap (B=99)
�̂1;T s.e. s.e.(Hess.) �̂

�
1;T s.e.

� 0.3311 0.0376 0.0399 0.3320 0.0381
�r 0.7485 0.0178 0.0178 0.7471 0.0199
�2g 0.3536 0.0503 0.0508 0.3512 0.0482

Rej(LRT ) = 0:0786 Rej(LR�T ) = 0:0208

Normality, JB ~B=10 ~B=20 ~B=30 ~B=40 ~B=99
�̂�T 0.0625 0.0917 0.0833 0.0875 0.1667
�̂�r;T 0.0417 0.0417 0.0500 0.0708 0.1458
�̂2;�g;T 0.0375 0.0292 0.0500 0.0500 0.1250

Normality, JB (Proc.) ~B=10 ~B=20 ~B=30 ~B=40 ~B=99
�̂�T 0.0875 0.0833 0.0917 0.1167 0.1667
�̂�r;T 0.0583 0.0708 0.0750 0.0917 0.1458
�̂2;�g;T 0.0500 0.0750 0.0708 0.1000 0.1250

NOTES: Results are based on M=500 Monte Carlo replications. Upper panel: �̂�1;T�is the
average of the ML estimator across Monte Carlo replications; �s.e.� indicates the standard errors
computed across Monte Carlo replications; �s.e.(Hess.)� indicates the average of the Hessian-
based standard errors across Monte Carlo replications; �̂�

�
1;T�is the average across Monte Carlo

repetitions of the bootstrap ML estimators obtained as average of �̂
�
1;T :1; :::; �̂

�
1;T :B ; the log-

likelihood maximization under both H0 (with the CER) and H1 (without the CER) is obtained
by the combining the Kalman �lter with the �CMA-ES�algorithm; �Rej(�)�denotes rejection
frequency across Monte Carlo replications, LRT is the LR test for H0 against H1 and is computed
using the 5% nominal signi�cance level and LR�T is the (iid) bootstrap analog of LRT based on
B bootstrap repetitions. Lower panel: �Normality, JB�reports rejection frequencies associated
with Jarque and Bera�s (1987) normality tests of the ~B bootstrap repetitions of the structural
parameter estimators; �Normality, JB�(Proc.) reports rejection frequencies associated with the
procedure described in the Remark 4.7; the N :=int(B= ~B) sub-samples used for the procedure
in Remark 4.7 are not overlapping; all normality tests are computed using the 5% nominal
signi�cance level.
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TABLE 2. MC experiment. AS-DGP2

�0 �0  1;0  2;0 �0 �r;0 �g;0 �z;0 �2r;0 �2g;0 �2z;0
2 0.33 1.5 0.125 0.9975 0.75 0.95 0.90 0.04 0.36 0.09

T=100 Monte Carlo Bootstrap (B=99)
�̂2;T s.e. s.e.(Hess.) �̂

�
2;T s.e.

� 0.3368 0.0587 0.0611 0.3408 0.0582
 1 1.5121 0.1717 0.1205 1.5327 0.1644
�r 0.7481 0.0260 0.0176 0.7480 0.0268
�2r 0.0393 0.0061 0.0057 0.0382 0.0061
�2g 0.3549 0.0517 0.0501 0.3456 0.0492
�2z 0.0907 0.0242 0.0191 0.0925 0.0237

Rej(LRT ) = 0:0785 Rej(LR�T ) = 0:0331

Normality, JB ~B=10 ~B=20 ~B=30 ~B=40 ~B=99
�̂�T 0.1064 0.1749 0.1868 0.2033 0.4397
 ̂
�
1;T 0.1277 0.2175 0.2766 0.3050 0.5816
�̂�r;T 0.0662 0.0922 0.0946 0.1064 0.1395
�̂2;�r;T 0.0662 0.0804 0.0922 0.1348 0.1891
�̂2;�g;T 0.0638 0.0709 0.0898 0.0946 0.1608
�̂2;�z;T 0.0780 0.0969 0.1135 0.1537 0.2979

Normality, JB (Proc.) ~B=10 ~B=20 ~B=30 ~B=40 ~B=99
�̂�T 0.1253 0.1466 0.1749 0.2128 0.4397
 ̂
�
1;T 0.2009 0.3570 0.3948 0.4161 0.5816
�̂�r;T 0.0686 0.0922 0.1135 0.0969 0.1395
�̂2;�r;T 0.0709 0.0851 0.0946 0.1158 0.1891
�̂2;�g;T 0.0686 0.0780 0.0946 0.1040 0.1608
�̂2;�z;T 0.0946 0.1418 0.1608 0.1820 0.2979

NOTES: See Table 1.
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TABLE 3. An and Shorfheide�s (2007) DSGE model on U.S. quarterly data

Sample 1984:Q2-2008Q3, T=98 Bootstrap

model AS-M1 �̂1;T s.e.(Hess.) �̂
�
1;T s.e. Normality

� 0.1233 0.0177 0.1237 0.0210 p-val.=0.2593(an)
�r 0.8354 0.0174 0.7583 0.0301 p-val.=0.2141(an)
�2g 0.5862 0.1004 0.5681 0.1005 p-val.=0.5000(an)

LRT = 176:11 asym. p-val.=0.0000 Bootstrap (iid) p-val.=0.053
Bootstrap (wild) p-val.=0.147

model AS-M2 �̂2;T s.e.(Hess.) �̂
�
2;T s.e. Normality

� 0.6979 0.2160 0.6915 0.0368 p-val.=0.0010(rn)
 1 2.0000 0.2823 1.9403 0.1467 p-val.=0.0018(rn)
�r 0.7757 0.0169 0.6092 0.0767 p-val.=0.1322(an)
�2r 0.0291 0.0044 0.0646 0.0293 p-val.=0.0328(an)
�2g 0.3113 0.0479 0.3150 0.0536 p-val.=0.5000(an)
�2z 0.0163 0.0033 0.0221 0.0087 p-val.=0.0215(rn)

LRT = 83:25 asym. p-val.=0.0000 Bootstrap (iid) p-val.=0.007
Bootstrap (wild) p-val.=0.112

NOTES: The log-likelihood maximization under both H0 (with the CER) and H1 (without
the CER) is obtained by the combining the Kalman �lter with the �CMA-ES�algorithm with the
following bounds on the optimization paramater space: [0.04, 0.7] for �, [0.5, 0.95] for �r and [0.5,
2] for  1. The column �s.e.(Hess.)� summarizes the standard errors computed using the inverse
of the estimated Hessian matrix; the columns under �Bootstrap�report averages across B=999
(iid) bootstrap repetitions; asymptotic p-values associated with the QLR tests for the CER are
taken from the �2k distribution with k=10=13-3 for model AS-M1 and k=7=13-6 for model
AS-M2, where 13=dim(�), and � is the vector of parameters of the state space representation
of the DSGE model under H1; the bootstrap (iid) p-values associated with the QLR tests are
computed using B=999 repetitions generated under H0 and the algorithm of Section 4.1; the
p-value calculated with the wild-bootstrap is obtained as described in the Remark 4.3 using
w�t�N(0,1); the p-values under �Normality� refer to Jarque and Bera�s (1987) normality test
calculated on ~B=20 bootstrap repetitions; �rn�means that the procedure summarized in Remark
4.7 rejects the null of normality, �an�means that the procedure accepts the null of normality.
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TECHNICAL SUPPLEMENT TO
�BOOTSTRAPPING DSGE MODELS�

By Giovanni Angeliniy, Giuseppe Cavalierey and Luca Fanelliy�

August 29, 2016

TS.1 Introduction

This Technical Supplement develops/expands a number of topics discussed in Angelini,
Cavaliere and Fanelli (2016), ACF hereafter. It is organized as follows.

In Section TS.2 we present the relationship between the structural form of the DSGE
model, its rational expectations determinate solution and the associated �ABCD�form.
In Section TS.3 we illustrate the relationship between the coe¢ cients that characterize
the state space representation associated with the DSGE model without the CER im-
posed and the structural parameters. Section TS.4 is devoted to some estimation issues.
In particular, in Section TS.4.1 we discuss QML estimation of the DSGE model with
and without the CER imposed, while in Section TS.4.2 we review the regularity con-
ditions that permit standard inference in strongly identi�ed DSGE models. In Section
TS.5 we provide further Monte Carlo results based on the ARMA(1,1) process (Sec-
tion TS.5.1), on Andrews and Mikusheva�s (2015) DSGE model (Section TS.5.2), and
we also include some additional tables related to An and Schorfheide�s (2007) DSGE
model (Section TS.5.3) analyzed in ACF. Finally, further empirical results related to
the empirical illustration in ACF are given in Section TS.6.

TS.2 Structural model, rational expectations
solution and state space representation

A common starting point in the econometric analysis of DSGE models is the so-called
�ABCD�state space representation, see Fernández-Villaverde et al. (2007), reported in
eq.s (10)-(11) in ACF. It is not always clear, however, which is the connections between
the structural form, its rational expectations solution and the ABCD form. We start
from the structural representation of the DSGE model, i.e. from the system of log-
linearized structural Euler equations that describe the economy, and then discuss how
to obtain the associated ABCD state space form.

Let Zt:=(Z1;t; Z2;t; � � � ; Znz ;t)0 be a nz�1 vector of endogenous possibly unobserved
variables at time t, which can be interpreted as deviation from steady state values. We
assume that, after log-linearization and, for t = 1; :::; T , the structural form reads as

�0Zt = �fEtZt+1 + �bZt�1 +��t (TS.1)

�t = R�t�1 + !t , !t �WN(0;�!). (TS.2)
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In eq.s (TS.1)-(TS.2), �i:=�i(�), i = 0; f; b are nz�nz matrices whose elements depend
on the vector of structural parameters �, �:=�(�) is an nz � n! matrix of full-column
rank (n! � nz), whose elements may depend on � but which essentially selects the
shocks that enter the equations, �t is a n! � 1 vector of autoregressive disturbances,
R:=R(�) is an n! � n! stable diagonal matrix, !t is the n! � 1 vector of white noise
structural shocks with covariance matrix �!:=�!(�). !t is adapted to the sigma-�eld
Ft, where Ft is the agents�information set at time t and EtZt+1:=E(Zt+1 j Ft). The
term !t will be referred to as the vector of fundamental structural shocks, and its
covariance matrix �! can be either diagonal or non-diagonal. The initial condition Z0
are treated as given. Finally, the true value of � is denoted with �0 and is assumed to
be an interior point of the determinacy region PD of the compact parameter space P.

The multivariate linear(ized) rational expectations model described by system (TS.1)-
(TS.2) nests a large class of (log-linearized) DSGE models currently used in policy and
business cycle analysis. A convenient summary of system (TS.1)-(TS.2) can be ob-
tained by re-de�ning the vector of state variables as Z�t :=(Z

0
t; �

0
t)
0, and considering the

(nz + n!)-dimensional system�
�0 ��

0n!�nz In!

�
��0

�
Zt
�t

�
Z�t

=

�
�f 0nz�n!

0n!�nz 0n!�n!

�
��f

�
EtZt+1
Et�t+1

�
EtZ�t+1

+

�
�b 0nz�n!

0n!�nz R

�
��b

�
Zt�1
�t�1

�
Z�t�1

+

�
0nz�n!
In!

�
z�

!t

that we compact in the expression

��0Z
�
t = �

�
fEtZ

�
t+1 + �

�
bZ

�
t�1 +z�!t: (TS.3)

The de�nition of the matrices ��0; �
�
f ;�

�
b and z

� in system (TS.3) is obvious.
A rational expectations solution to system (TS.3) is any stochastic process fZ�st (�)g

1
t=0

such that, for � 2 P� and for �xed initial conditions, the quantity EtZ�st+1(�) = E(Z�st+1(�) j
Ft) exists and if Z�st+1(�) is substituted for Z�t (Z�st (�) = Z�t ) into the structural equa-
tions, the model is veri�ed for each t. We use the notation fZ�st (�)g

1
t=0 to remark the

dependence of the solution on the values of the structural parameters.
Under Assumption 1 of ACF, the unique stable solution associated with system

(TS.3) can be represented in the form

Z�t = 	
�(��)Z

�
t�1 +N

�(��)!t , t = 1; :::; T (TS.4)

where the (nz+n!)�(nz+n!) matrix 	�:=	�(��) is stable and solves the second-order
quadratic matrix equation

��f (	
�)2 � ��0	� + ��b = 0(nz+n!)�(nz+n!); (TS.5)

while the (nz + n!)�n! matrix N�:=N�(��) satis�es

(��0 � ��f	�)N� = z�: (TS.6)
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The relationships in eqs. (TS.5)-(TS.6) can be easily obtained using e.g. Binder and
Pesaran�s (1995) solution method, see also Uhlig (1999). In eq. (TS.4), we use the
notation ��=g(�), where g(�) is a nonlinear vector function, to remark the fact that
there exists a set of �reduced form�coe¢ cients, collected in the vector ��, that depend
nonlinearly on the structural parameters � through the CER in eqs. (TS.5)-(TS.6).
Obvioulsy, ��0 = g(�0). We come back on this in Section TS.3. The 	� matrix that
solves eq. (TS.5) has the following structure

	�:=
�

	�11 	�12
0n!�nz R

�
and 	�11 and 	

�
12 are nz � nzand nz � n!, respectively.

Let yt:=(y1;t; y2;t; � � � ; yny ;t)0 be the ny � 1 vector of (demeaned) observed variables:
The solution in eq. (TS.4) can be viewed as a state system with associated measurement
system

yt
ny�1

= H
ny�(nz+n!)

Z�t
(nz+n!)�1

(TS.7)

where H plays the role of a ny�(nz+n!) selection matrix that picks out the observables
from Z�t . Although eq. (TS.7) is general enough, we might consider a more general
formulation, given by

yt
ny�1

= H
ny�(nz+n!)

Z�t
(nz+n!)�1

+ J
ny�nv

vt
nv�1

: (TS.8)

In this speci�cation, vt is a nv�1 (nv � ny) vector of measurement errors, assumed white
noise with covariance matrix �v, and J is a ny�nv selection matrix. The vector vt can
be interpreted as an �additional�source of random shocks (errors) that impinge on yt,
and is generally interpreted as a measurement error, but it can also involve elements of
!t itself (see e.g. the measurement equations in An and Schorfheide, 2007). Typically, in
singular systems, i.e. models for which ny > n!, a number nv = ny�n! of measurement
errors is arti�cially added to the system such that the nu-dimensional (nu:=n! + nv)
vector ut:=(!0t; v

0
t)
0 is the new vector of models�innovations, and the equality ny = nu

is obtained. In the derivations that follow, we stick to the measurement system in eq.
(TS.7) (our approach can easily be generalized to the case where !t is replaced with
ut).

The solution in eq. (TS.4) obtained under Assumption 1 is not generally expressed
in �minimal�form, meaning that Z�t might contain more states than strictly necessary to
fully characterize the overall dynamics of the system. In principle, a more parsimonious
state space representation can be achieved by selecting the relevant states because any
non-minimal form can be manipulated such that eventually a minimal representation is
achieved. Extensive discussions and examples of how this can be done in practice may
be found in e.g. Komunjer and Ng (2011) and Guerron-Quintana et al. (2013).

A natural criterion to obtain a minimal representation from system (TS.4) is pro-
vided by the columns of the matrix 	�: zero columns correspond to non-minimal states,
see e.g. Komunjer and Ng (2011). Thus, dropping states in Z�t associated with zero
columns of 	� is a necessary, albeit not su¢ cient, operational step to obtain a minimal
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representation. Let Pm be the (nz + n!)-dimensional permutation matrix such that
PmZ�t = (Z 0m;t; Z

0
r;t), where Z

0
m;t is the sub-vector of states which are associated with

non zero-columns of 	�, and Z 0r;t is the sub-vector of states associated with zero-columns
of 	�. Using Pm, we can re-parameterize system (TS.4) in the form

PmZ�t = Pm	�(��)P�1m PmZ�t�1 + PmN�(��)!t

which corresponds to the representation�
Zm;t
Zr;t

�
=

�
	m(��) 0nm�(nz+n!�nm)
	r(��) 0(nz+n!�nm)�(nz+n!�nm)

��
Zm;t�1
Zr;t�1

�
+

�
Nm(��)

Nr(��)

�
!t

(TS.9)
where Zm;t is the nm � 1 vector of potentially minimal state variables and Zr;t is the
(nz + n! � nm)� 1 vector of �redundant�state variables. Observe that nm � nz + n!,
and that 	m := 	m(��), 	r := 	r(��), Nm := Nm(��) and Nr := Nr(��) are matrices
of suitable dimensions derived from 	� and N� by properly rearranging states.

From the �rst set of nm equations of system (TS.9) we obtain

Zm;t = 	m(��) Zm;t�1 + Nm(��) !t: (TS.10)

Using Pm and eq. (TS.7),1 the measurement system reads

yt = HP�1m Pm Z�t = HP�1m
�
Zm;t
Zr;t

�
= (Hm : Hr)

�
Zm;t
Zr;t

�
= HmZm;t +HrZr;t

= (Hm	m +Hr	r)
ny�nm

Zm;t�1
nm�1

+ (HmNm +HrNr)
ny�n!

!t
n!�1

(TS.11)

where the selection matrices Hm and Hr satisfy the condition HP�1m =(Hm : Hr).
By coupling system (TS.10) and system (TS.11) and re-naming matrices as follows:
A(��) := 	m(��), B(��) := Nm(��), C(��) := (Hm	m + Hr	r), D(�) := (HmNm +

HrNr), we obtain the so-called ABCD form:

Zm;t
nm�1

= A(��)
nm�nm

Zm;t�1
nm�1

+ B(��)
nm�n!

!t
n!�1

(TS.12)

yt
ny�1

= C(��)
ny�nm

Zm;t�1
nm�1

+ D(��)
ny�n!

!t
n!�1

(TS.13)

which is the candidate minimal state space representation associated with the DSGE
model discussed in eq.s (10)-(11) of Section 2 of ACF.

TS.3 Mapping between state space parameters and
structural parameters under the CER

Given the ABCD form in eq.s (TS.12)-(TS.13) and Assumptions 1-3 of ACF, the �non-
redundant� CER in eq. (TS.5) can be re-formulated as follows. Let 	�m the block

1A equivalent but more involved derivation follows if eq. (TS.8) is used in place of eq. (TS.7).
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matrix that characterizes system (TS.9). The relationship between 	�m and 	
� is given

by 	�m=Pm	�P�1m , hence the restrictions entailed by the quadratic matrix equation in
eq. (TS.5) can be re-written as

��f
�
P�1m 	�mPm

�2 � ��0(P�1m 	�mPm) + ��b
= ��fP�1m (	�m)

2 Pm � ��0P�1m 	�mPm + ��b = 0(nz+n!)�(nz+n!)
which are equivalent to

���f (	
�
m)

2 � ��0	�m + ���b = 0(nz+n!)�(nz+n!) (TS.14)

where ���f :=�
�
fP

�1
m , ���0 :=�

�
0P

�1
m and ���b :=�

�
bP

�1
m . The expression in eq. (TS.14) gives

rise to both trivial identities (i.e. zeros on the left- and right-hand side of the system)
and actual constraints. It is convenient to summarize the constraints (not including
trivial identities) featured by eq. (TS.14) as

f(�; �) = 0dim(�)�1 (TS.15)

where f(�; �) is a nonlinear twice-di¤erentiable vector function, and � is the vector that
contains all non-zero elements of the matrix 	�m that contribute to the likelihood of
the state space representation of the model without the CER; dim(�)< nz + n!. If the
CER are valid at the true parameters points and

det

 
@f(�; �)

@�0

����
(�;�)=(�0;�0)

!
6= 0,

by the implicit function theorem � = g(�), where g(�) is the nonlinear di¤erentiable
function already mentioned in Section TS.2. Thus, � can be quali�ed as the vector that
contains all non-zero elements of the matrix 	�m before the CER are imposed. Once
the CER are imposed, we obtain �� = g(�), where g(�) is such that

@��
@�0

dim(�)�dim(�)

= �
�
@f(�; �)

@�

��1
dim(�)�dim(�)

�
�
@f(�; �)

@�0

�
dim(�)�dim(�)

: (TS.16)

Hence, �� (dim(��)=dim(�)), can be quali�ed as the vector that contains all non-zero
elements of the matrix 	�m after the CER are imposed.

Iskrev (2008) notices that the Jacobian in eq. (TS.16) can be used to derive analytic
standard errors for the parameters of the estimated DSGE model, provided �̂T and a
consistent estimate of the information matrix associated with the state space form is
obtained. Indeed, let

�IOP
�̂T ;T

:=
1

T

TX
t=1

@l(yt j Fyt�1;�)
@�

�
@l(yt j Fyt�1;�)

@�0

�����
�=�̂T

be the �incremental observed information�estimate of the information matrix associated
with the state space form that does not incorporate the CER, and l(yt j Fyt�1;�) the
log-likelihood associated with observations at time t. Using the chain rule we have:

@l(yt j Fyt�1; g(�))
@�

=

�
@g(�)

@�0

�0
dim(�)�dim(�)

�
@l(yt j Fyt�1;�)

@�
dim(�)�1
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so that

�IOP
�̂T ;T

=
1

T

TX
t=1

��
@g(�)

@�0

�0
�
@l(yt j Fyt�1;�)

@�

�
�
�
@l(yt j Fyt�1;�)

@�
�
�
@g(�)

@�0

�������
�=�̂T ;�=�̂T

=

�
@g(�)

@�0

�
�=�̂T

�IOP
�̂T ;T

�
@g(�)

@�0

�
�=�̂T

where this matrix is positive de�nite by construction.

TS.4 Estimation issues

In this section we discuss some technicalities related to the maximum likelihood esti-
mation of the DSGE model considered in ACF (section TS.4.1). We also review the
regularity conditions that permit standard inference (Section TS.4.2),

TS.4.1 Derivation of the QML estimator of the DSGE model

Estimation of the DSGE model under the null of the CER (H0) and without the CER
(H1) is a necessary preliminary step to the computation of the QLR test for the CER
discussed in Section 3 of ACF.

For convenience, we start from the ABCD representation:

Zm;t
nm�1

= A(��)
nm�nm

Zm;t�1
nm�1

+ B(��)
nm�n!

!t
n!�1

(TS.17)

yt
ny�1

= C(��)
ny�nm

Zm;t�1
nm�1

+ D(��)
ny�n!

!t
n!�1

(TS.18)

and consider Assumptions 1-3 and the other auxiliary hypotheses discussed in ACF.
Using the invertibility of A(��), the system can be written in the form

Zm;t = A(��)Zm;t�1 + B(��) !t (TS.19)

yt = H+(��)Zm;t + J(��) !t (TS.20)

where H+(��):=C(��)A(��)
�1 and J(��):=D(��) � C(��)A(��)

�1B(��). For ease of
notation, we suppress temporarily the dependence of the matrices appearing in system
(TS.19)-(TS.20) on ��=g(�), and simply replace these matrices with A, B; H

+ and J .
De�ne Ẑm;tjt�1 := E(Zm;t j Fyt�1) and let ŷtjt�1 := E(yt j Fyt�1) = H+Ẑm;tjt�1 be the
best linear predictor of yt based on the data in Fyt�1, where F

y
t := �(yt; :::; y1) � Ft

is the information set based on the observable variables up to time t. Observe that
E(!t j Fyt�1) = 0n!�1:

The innovation form representation (Anderson and Moore, 1979) associated with
system (TS.19)-(TS.20) can be written in the form

Ẑm;t+1jt = AẐm;tjt�1 + Kt �
0
t (�) (TS.21)

yt = H+Ẑm;tjt�1 + �
0
t (�) (TS.22)
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where Kt = Kt(��) is the Kalman gain and

�0t (�) := yt �H+Ẑm;tjt�1 (TS.23)

are the innovation residuals with covariance matrix

��0;t (�) = H+P 0tjt�1H
+0 + J�!J

0 (TS.24)

and P 0tjt�1 := E((Zm;t� Ẑm;tjt�1)(Zm;t� Ẑm;tjt�1)0 j Fyt�1), P 01j0 being given. We use the
superscript �0�for �0t in eq. (TS.23) and ��0;t and P

0
tjt�1 in eq. (TS.24) to remark that

the representation in eq.s (TS.21)-(TS.22) is obtained under the null H0 which imposes
the CER. Imposing the normality of �0t in eq. (TS.23), i.e.

yt j Fyt�1 � N(H+Ẑm;tjt�1 , ��0;t (�))

the estimation of � can be accomplished via Gaussian maximum likelihood estimation.
Let `T (g(�)) be the Gaussian log-likelihood function associated with the state space
model in eq.s (TS.21)-(TS.22). The essential part of the log-likelihood `T (g(�)), denoted
for simplicity by `�;T (g(�)) :=

PT
t=1 l(yt j F

y
t�1; �), is given by

`�;T (�) : =�
TX
t=1

`t(�) (TS.25)

`t(�) : =l(yt j Fyt�1; �) = flog det(��c;t (�)) + �0t (�)
0��0;t (�)

�1 �0t (�)g

where �0t (�) and ��0;t (�) are de�ned above and depend on � through their dependence
on A(��), B(��), H

+(��) and J(��). Given `�;T (�) in eq. (TS.25), the QML estimator
of � solves

�̂T := arg max
�2PD

`�;T (g(�)) (TS.26)

and can be computed by combining the Kalman �lter with numerical optimization
methods, see e.g. Andreasen (2010). The QML estimator of �� is obtained from �̂�;T =

g(�̂T ).
To estimate �, we can consider analogs of systems (TS.19)-(TS.20) and (TS.21)-

(TS.22), with the matrices A, K;H+ now depending on �, and

�ut (�) yt �H+(�)Ẑm;tjt�1

��u;t (�) = H+(�)P utjt�1H
+(�)0 + J(�)�!uJ(�)

0;

for suitably given P utjt�1. We use the superscript �u�for �
u
t (�), ��u;t (�) and P

u
tjt�1 to

remark that the innovation form depends on the vector � under H1. The QML estimator
of � is therefore obtained from

�̂T := arg max
�2P�

`o;T (�); `�;T (�) = �
TX
t=1

n
log det(��u;t (�)) + �

u
t (�)

0��u;t (�)
�1 �ut (�)

o
:

(TS.27)
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TS.4.2 Regularity conditions for inference

In this section we review the regularity conditions that permit standard inference, hence
strong identi�cation, when the DSGE model is estimated by QML. We also stress the
conditions that fail in weakly identi�ed DSGE models and invalidate the Gaussian
asymptotic approximation. The general setup is the same as in Section 2 of ACF,
with Assumptions 1-3 and �0 replaced with the �pseudo-true�value of the structural
parameters �y (Section 3.2 of ACF). When the determinate solution of the DSGE model
belongs to the data generating process, namely the CER under H0 are true, �y = �0.

Consistency of the QML estimator

Assume the following conditions hold:
(TS-A.i) PD is compact;
(TS-A.ii) �y is the unique maximizer of Q0(�) in a nieghborhood N�y of �

y;
(TS-A.iii) Q0(�) is continuos in �;

(TS-A.iv) Q̂T (�) converge uniformily in probability toQ0(�), i.e. sup�2PD
���Q̂T (�)�Q0(�)���!p

0.2

Then
arg max

�2PD
Q̂T (�) =: �̂T !p �

y := arg max
�2PD

Q0(�): (TS.28)

The proof of this standard result may be found, among others, in Wooldridge (1994).

In our framework, condition (TS-A.i) is covered by Assumption 1 in ACF. Condition
(TS-A.ii) is consistent with the local identi�cation condition postulated for the DSGE
model in Assumptions 3 in ACF. Conditions (TS-A.iii) and (TS-A.iv) are standard
regularity conditions for the consistency of the QML estimator �̂T . (TS-A.iii) is satis�ed
in our setup. For covariance stationary and ergodic processes, su¢ cient condition for
(TS-A.iv) is that j`t(�)j � b(yt) for all � 2 PD, for some function b(�) 2 R+ such that
E(b(yt)) < 1, see e.g. Theorem 4.1 in Wooldridge (1994). It is the lack of uniform
convergence in (TS-A.iv) that may fail in weakly identi�ed DSGE models.

Asymptotic normality of the QML estimator

Assume that in addition to (TS-A.i)-(TS-A.iv), the following conditions hold:
(TS-A.v) �y is in int(PD), where int(�) indicates the interior of PD;
(TS-A.vi) T 1=2r�Q̂T (�y) = T�1=2

PT
t=1r�`t(�y) satis�es the central limit theorem

(CLT):

T�1=2
TX
t=1

r�`t(�y)
d! N(0dim(�)�1;B) , B := B(�y) := lim

T!1
V ar

 
T�1=2

TX
t=1

r�`t(�y)
!
;

(TS-A.vii)

sup
�2N

�y




r2��Q̂T (�)�A(�)


!p 0 (TS.29)

2An equivalent synthetic formulation of (TS-A.iv) is that f`t(�)g satis�es a uniform weak law of
large numbers (UWLLN), see e.g. Wooldridge (1994).
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where in this case k�k is the matrix Euclidean norm and A(�) is a (non-stochastic)
matrix continuos at �y satisfying3

A(�y):= lim
T!1

E
�
r2��Q̂T (�y)

�
= lim
T!1

E

 
1

T

TX
t=1

r2��`t(�y)
!

= lim
T!1

1

T

TX
t=1

E
�
r2��`t(�y)

�
= E

�
r2��`t(�y)

�
;

(TS-A.viii) A = A(�y) is nonsingular.
Then

T 1=2(�̂T � �y)
d! N

�
0dim(�)�1;A�1BA�1

�
(TS.30)

where A = A(�y) = (I2D
�y;1)

�1 and B = B(�y) = (IOP
�y;1)

�1 (see the de�nitions of I2D
�y;1

and in IOP
�y;1 in ACF). The proof of the standard asymptotic normality result may be

found, among others, in e.g. Wooldridge (1994).

We recall that the convergence behind eq. (TS.30) stems from a conventional mean
value expansion of r�Q̂T (�̂T ) around �y, which leads to

T 1=2(�̂T � �y) = �
n
r2��Q̂T (��T )

o�1
T 1=2r�Q̂T (�y)

= �
(
T�1

TX
t=1

r2��`t(��T )
)�1(

T�1=2
TX
t=1

r�`t(�y)
)

(TS.31)
where ��T is on the segment connecting the points �̂T and �y in PD. By (TS-A.vii), the
�rst term in eq. (TS.31) converges uniformily in probability to A(�y)�1 (as ��T !p �

y),
while by (TS-A.vi) the second term converges in distribution to N

�
0dim(�)�1;B

�
.

Condition (TS-A.v) might be violated in some estimated DSGE models, because
it is often found that the QML estimator �̂T tends to locate on the boundary of the
optimization set. Obviously, when �y lies exactly on the boundary of PD, asymptotic
normality does no longer hold.4 It is the uniform convergence condition (TS-A.vii)
which is key to strong/weak identi�cation. As detailed in ACF, in weakly identi�ed
DSGE models, the uniform convergence of the Hessian to a non-stochastic matrix in
eq. (TS.29) is no longer guaranteed, hence the expansion in eq. (TS.31) cannot be used
for the QML estimator, see Andrews and Cheng (2012) and Andrews and Mikusheva
(2015). Finally, the condition (TS-A.viii) is violated in unidenti�ed DSGE models, i.e.
when the rank condition in Assumption 3 of ACF fails.

TS.5 Further Monte Carlo results

In this section we report additional Monte Carlo results other the ones in Section 5 of
ACF. Section TS.5.1 deals with the ARMA(1,1) model and Section TS.5.2 investigates
Andrews and Mikusheva�s (2015) DSGE model. Section TS.5.3 completes the Monte
Carlo experiment in ACF considering also the case T = 250:

3An equivalent synthetic formulation of condition (TS-A.vii) is that
�
r2
��`t(�)

	
satis�es a UWLLN.

4See Morris (2016) for a discussion of the �pileup�phenomenon in DSGE models.
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TS.5.1 The ARMA(1,1) model

The ARMA(1,1) model represents an interesting case study for our bootstrap aproach
as it is particularly suited to characterize strong and weak identi�cation.

Let yt be a scalar that obeys the ARMA(1,1) model:

yt = (� + �)yt�1 + !t � �!t�1 , !t � iidN(0; 1), t = 1; :::; T (TS.32)

where y0 and !0 are given, and the vector of parameters before any restriction is imposed
is � := (�1; �2)

0 := (�; �+�)0, where � can be interpreted as the di¤erence between the
autoregressive (�2 = �+ �) and moving average (�1 = �) coe¢ cients. It is seen that in
the special case � = 0 (�2 = �1), the model collapses to

yt = !t

and the moving average parameter � is not identi�ed. In this case, Assumptions 2-3
of ACF are violated and the conditions for the consistency of the QML estimator are
not satis�ed. When � is close to zero (but di¤erent from zero so that Assumptions
2-3 still hold), the likelihood function of the ARMA(1,1) model is relatively �at in the
direction of �. This model satis�es the parameterization of Andrews and Cheng (2012)
and their asymptotic theory can be applied. Andrews and Mikusheva (2015) show that
in the weak identi�cation case, if the parameter � is de�ned through the embedding
�T = C=T 1=2 for some constant C, then suitably normalized versions of the measures of
information IOP�0;T and I

2D
�0;T

(see Section 3.2 of ACF) converge in the limit to di¤erent
quantities, in particular:

DT (IOP�0;T � I
2D
�0;T )D

0
T !p Mdim(�)�dim(�),

where Mdim(�)�dim(�) is a random matrix and DT is a normalization (typically diag-
onal) matrix. The equation above implies that IOP�0;T and I

2D
�0;T

are no longer inter-
changeable measures of information even if White�s (1982) information matrix equality
E(�IOP�0;T (�0)� �I

2D
�0;T

(�0)) = 0dim(�)�dim(�) is valid.
We assume that the model in eq. (TS.32) is stationary and invertible and consider

the testing problem
H000: � = 0:4 against H001: � 6= 0:4: (TS.33)

Under H000, the (minimal) state-space representation associated with eq. (TS.32) is given
by

Zm;t =

�
0:4 + � 1

0 0

�
A(��)

Zm;t�1 +

�
1

�0:4

�
B(��)

!t (TS.34)

yt = (1; 0)
H+(��)

Zm;t ; (TS.35)

hence, � = � is the structural parameters that appears under the null. The associated
(minimal) state-space representation without imposing the restriction (i.e. under H001)
is given by

Zm;t =

�
� + � 1

0 0

�
A(�)

Zm;t�1 +

�
1

��

�
B(�)

!t (TS.36)
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yt = (1; 0)
H+(�)

Zm;t (TS.37)

where the parameters �1 = � and �2 =(� + �) satisfy the conditions �1 < �1 < 1,
�1 < �2 < 1, which ensure stationarity and invertibility. In this speci�c example, the
relationship �� = g(�) implied by the null hypothesis H000 is linear and can be summarized
by the expression:

� =

�
�1
�2

�
=

�
�

� + �

�
= under H000 =

�
0:4

0:4 + �

�
= ��:

We generate M = 1000 samples of length T = 100 and T = 250 from the ARMA
(1,1) model under the null H000 in eq. (TS.33), setting y0 = !0 = 0 and postulating
a Gaussian distribution for !t. For each replication, samples of T + 200 observations
are actually generated, with the �rst 200 observations being discarded. We consider
di¤erent scenarios depending on the values assumed by the parameter �(= �). As
in Andrews and Cheng (2012), we select �(= �) from the set f�0:76;�0:05g, hence
our results are partly comparable with their work. The data generating process which
corresponds to the case of strong identi�cation is obtained with �(= �) = �0:76, while
�(= �) = �0:05 characterizes the weak identi�cation scenario.

For each data generating process considered and on each generated sample, we
test the hypothesis H000 against H

00
1 in (TS.33) by using a QLR test and compute the

bootstrap p-value associated with the QLR test by applying the algorithm discussed
in Section 4 of ACF. We use B = 99 bootstrap replications for T = 100 and B = 249

bootstrap replications for T = 250. We run both a restricted bootstrap procedure
(i.e. the bootstrap samples are generated imposing the null H000) and an unrestricted
bootstrap procedure (i.e. the bootstrap samples are generated without imposing the
null). Both under H000 and H

00
1, the log-likelihood is maximized by the BFGS method,

imposing that the optimization parameter spaces for the MA and AR coe¢ cients are
constrained to [�0:85; 0:85] and [�0:90; 0:90], respectively. Since for this experiment
the speci�ed likelihood is correctly Gaussian, throughout this section we use the terms
�ML estimator�and �LR test�in place of �QML estimator�and �QLR test�. To evaluate
the empirical size of the normality tests for strong/weak identi�cation, we apply our
bootstrap algorithm for di¤erent choices of ~B (out of B) in the set f10; 20; 30; 40; 99g
when we consider the case T = 100, and in the set f20; 30; 40; 249g when we consider
the case T = 250. The so-obtained bootstrap realizations �̂

�
T :1; :::; �̂

�
T : ~B (under H000)

and �̂�T :1; :::; �̂
�
T : ~B

and �̂
�
T :1; :::; �̂

�
T : ~B (under H

00
1) are used to compute Jarque and Bera�s

(1997) (henceforth JB) and Shapiro and Wilk�s (1965) (henceforth SW) normality tests
at the 5% nominal signi�cance level.

Strong identification

We start our investigation from the case �0(= �0) = �0:76 which characterizes a
strongly identi�ed ARMA(1,1) process. Estimation and testing results are summa-
rized in Table TS1. We notice that the ML estimates of the parameters � and � under
H001 are substantially similar to their (restricted) bootstrap counterparts and tend to
converge to their true population values as T increases. For both T=100 and T=250,
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the analytic (Hessian-based) standard errors associated with �̂T and �̂T are similar to
the bootstrap standard errors. The similarity between sample estimates and bootstrap
estimates is also observed for �̂T (=�̂T ) when the null H

00
0 is imposed. For both T=100

and T=250, the rejection frequency of the LR test for H000 against H
00
1 is close to the

nominal 5% level. The bootstrap counterpart of the LR test displays similar rejection
frequencies. In particular, the bootstrap distribution of the LR test seems to match
perfectly the �21 approximation (see also the discussion below).

As concerns our bootstrap misspeci�cation approach, we apply univariate tests of
normality on ~B (selected out of B) realizations of the bootstrap structural parameter
estimators. The associated empirical rejection frequencies are reported in Tables TS2a-
TS2b. Speci�cally, Tables TS2a summarizes the results obtained with the restricted
bootstrap, while TS2b summarizes the results obtained with the unrestricted bootstrap.
Recall that from the analysis in Section 4.3 of ACF we need ~B = o(T ) for the test to
be asymptotically valid. This fact seems to be fully re�ected in the simulation results,
which show that the lower ~B relative to T , the closer is the empirical size to the 5%
nominal signi�cance level. Figure TS1 compares, for the case T = 250, the �nite sample
densities of the ML estimators of the parameters under H000 and H

00
1 (left-panel) with

the �nite sample densities of the corresponding bootstrap estimators (right-panel), and
contrasts these densities with the Gaussian. The �nite sample densities in the left-panel
are computed across the M = 1000 Monte Carlo simulations, while the �nite sample
densities on the right-panel are computed across B = 249 repetitions obtained in one of
the Monte Carlo simulations. Overall, the results in Table TS1 and Tables TS2a-TS2b
show that in strong identi�ed models, the bootstrap works in the expected direction.
In particular, our simple test for strong identi�cation displays a good �nite sample size
coverage for proper choices of ~B relative to T .

Weak identification

We move to the case (�0(= �0) = �0:05), which characterizes a weakly identi�ed
�with near cancelling roots�ARMA(1,1) process. Estimation and testing results are
summarized in Table TS3. In this case, the ML estimator of � is not consistent (Andrews
and Cheng 2012) and this is fully re�ected in the output of Table TS3. However,
notice that under H000 the parameter � is �xed, while �(=�) plays the role of nuisance
parameter in the testing problem of H000 against H

00
1. Andrews and Mikusheva (2015)

show that �̂T (=�̂T ) is consistent and asymptotically normal under the null, and this can
be noticed from our results. For both T=100 and T=250, we also observe a substantial
mismatch between the ML estimates of � and � and the average of the bootstrap
replicates under H001. The mismatch between analytic (Hessian-based) and bootstrap
standard errors seems to increase with T . Instead, the ML estimates of �(=�) under
H000 are substantially similar to the average of the bootstrap ML estimates and tend to
converge to the true population values as T increases, consistently with Andrews and
Mikusheva�s (2015) �ndings. Interestingly, for both T=100 and T=250, the rejection
frequency of the LR test for H000 against H

00
1 and of its bootstrap analog is close to the

nominal 5% level, suggesting that in this case the �21 distribution still represents a good
approximation, as also con�rmed by Andrews and Cheng (2012).
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The empirical rejection frequencies of the normality tests associated with the boot-
strap repetitions of the structural parameter estimators are reported in Tables TS4a-
TS4b for di¤erent values of ~B. Table TS4a summarizes the results obtained with the
restricted bootstrap and Table TS4b summarizes the results obtained with the unre-
stricted bootstrap. Normality tests are computed using the 5% nominal level of signif-
icance. Notably, in this scenario, our approach does not detect strong deviations from
normality for �̂

�
T (=�̂

�
T ) under H

00
0, in line with Andrews and Mikusheva�s (2015) result.

Conversely, and as expected, the rejection frequencies of the normality test of �̂�T under
H001 signal identi�cation issues. For values of ~B for which we have a satisfactorily size
control in the case of strong identi�cation ( ~B = 20, ~B = 30), the rejection frequency of
the test of normality of �̂�T under H

00
1 lies around 15% and 50%. If we combine these ev-

idences with the discrepancy observed between analytic standard errors and bootstrap
standard errors, we can conclude that our approach detects the failure of the regularity
conditions for standard inference rather well. The bootstrap seems to be informative
and useful for practitioners.

TS.5.2 Andrews and Mikusheva�s (2015) DSGE model

We consider the DSGE model investigated in Andrews and Mikusheva (2015), given by
the system of equations:

xt = Etxt+1 � (rt � Et�t+1 � ��at); (TS.38)

�t = bEt�t+1 + �xt + "t , "t �WN(0; �2) (TS.39)

rt = �rt�1 + (1� �)���t + (1� �)�xxt + ut (TS.40)

�at = ��at�1 + "a;t , "a;t �WN(0; �2a) (TS.41)

ut = �ut�1 + "u;t , "u;t �WN(0; �2u) (TS.42)

which comprise a linearized output Euler equation (eq. (TS.38)) with autoregressive
exogenous shocks �at (eq. (TS.41)), a Phillips curve (eq. (TS.39)) with exogenous
White Noise shock "t, and a monetary policy rule (eq. (TS.40)) with autoregressive
exogenous shock ut (eq. (TS.42)). Andrews and Mikusheva (2015) show that under
the simplifying assumption � = 0, �x = 0, �� = b�1 and �2 = 0, the sixth-dimensional
vector � := (b; �; �; �; �2u; �

2
a)
0 is point-identi�ed if 0 < b < 1, � > 0, �2u > 0, �2a > 0,

0 < � < � < 1, which means that for all �s with elements satisfying 0 < b < 1,
� > 0, �2u > 0, �

2
a > 0, 0 < � < � < 1, our Assumptions 2-3 are satis�ed. Interestingly,

Andrews and Mikusheva (2015) show that identi�cation fails when � = �; more precisely,
when � = �, the parameter � := (b; �; �; �; �2u; �

2
a)
0 looses two degrees of identi�cation,

meaning that two elements among b; �; �2u; �
2
a are not separately identi�able. Instead,

when � � � is di¤erent from zero but close to zero, there is weak identi�cation and
statistical inference on the remaining parameters ay become unreliable.

We consider two DGPs. In the former, denoted AM-DGP1, other than the simplify-
ing assumptions � = 0, �x = 0, �� = b�1 and �2 = 0, we add the restriction that b and
�2a are known and �xed at their DGP values. In this case, even when � = �, the vector
�1:=(�; �; �; �2u)

0 is point-identi�ed (Assumptions 2-3 in ACF are valid). We expect that
the conditions for standard inference on �1 are valid in model AM-DGP1. In the latter,
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denoted AM-DGP2, we retain the simplifying assumptions � = 0, �x = 0, �� = b�1

and �2 = 0, but relax the hypothesis that �2a is known (still keeping the discount factor
b �xed at its DGP value, 0.99). In this case, despite the vector �2:=(�; �; �; �2u; �

2
a)
0 is

point-identi�ed and Assumptions 2-3 in ACF are valid, the distance � � � may a¤ect
the validity of the standard regularity conditions for inference. The DGP values used
for �1 and �2 are taken from Table 1 of Andrews and Mikusheva (2015).

For both AM-DGP1 and AM-DGP2, we generate M = 1000 samples of length
T=100 and T=250 from the minimal ABCD form associated with the DSGE model,
assuming that ("a;t; "t; "u;t)0 is Gaussian with diagonal covariance matrix, �xing the
initial conditions to zero. For each replication, a sample of T + 200 observations is
actually generated and the �rst 200 observations are then discarded. On each generated
dataset, we apply the bootstrap procedure summarized in Section 4 of ACF to analyze:
(i) the empirical size of the QLR test for the CER; (ii) the bootstrap-adjusted empirical
size of the QLR test for the CER (using B=99 bootstrap repetitions for the case T = 100
and B=249 bootstrap replications for the case T = 250); (iii) the empirical rejection
frequency of our bootstrap misspeci�cation test (in particular JB normality test) using
the 5% nominal sign�cance level. Results relative to AM-DGP1 are summarized in
Table TS5 and TS6. Results relative to AM-DGP2 are summarized in Table TS7 and
TS8. Since the data are simulated assuming a Gaussian distribution for the shocks,
throughout we use �ML�and �LR�in place of �QML�and �QLR�, respectively.

AM-DGP1

Results are summarized in Table TS5 for T=100 and in Table TS6 for T=250. The ML
estimates of the structural parameters and analytic (Hessian-based) standard errors are
substantially similar to the bootstrap ML estimates and bootstrap standard errors, as
it is expected in strongly identi�ed DSGE model. For T=100, using the asymptotic
critical values (taken from the �23 distribution), the rejection frequency of the LR test
for the CER is 4.8%, already close in this case to the 5% nominal signi�cance level.
Using the bootstrap procedure, this empirical size collapses to 2.7%. For T=250, the
rejection frequency based on asymptotic critical value is 5.8% and becomes 4.7% (still
close to the 5% signi�cance level) with the bootstrap. The bootstrap seems to work in
the right directions in the presence of strong identi�cation.

In the bottom panel of TS5 and TS6 we report the result of our misspeci�cation
approach. We observe for T=100 and T=250, �physiologic�empirical rejection frequen-
cies for the normality tests which fall in the range 4.5%-10% for small values of ~B, as
opposed to the 5% nominal signi�cance level. The rejection frequencies increase, as
expected, when we use the procedure summarized in the Remark 4.7 of ACF. As ~B
increases relative to T , therefore violating the condition ~B=T ! 0, the misspeci�ca-
tion test over-rejects the null hypothesis. We can conclude that conditionally on the
calibrated parameters, the estimated Andrews and Mikusheva�s (2015) DSGE model
with parameters �1 := (�; �; �; �2u)

0 seems to meet the conditions that ensure strong
identi�cation.
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AM-DGP2

Table TS7 and Table TS8 summarize a more involved situation compared to the results
reported in Table TS5 and TS6. For both T=100 and T=250, the ML estimates of the
structural parameters and their bootstrap analogs have similar magnitudes. However we
observe some discrepancies between analytic (Hessian-based) and bootstrap standard
errors for some parameters (e.g. �2a), even when the sample size is increased. For
T = 100, using the asymptotic critical values (taken from the �22 distribution), the
rejection frequency of the LR test for the CER is 3.6% as opposed to the 5% nominal
signi�cance level, and the empirical size of the bootstrap version of the test is 4.1%.
For T=250, we obtain 1.1% and 2.4%, respectively. The tendency of the LR test
to under-reject the CER as the sample size increases indicates that there might be
issues as concerns the regularity conditions for standard inference. The �nite sample
performance of the bootstrap, however, seems to provide reasonable results also in
these cases. More precisely, the bootstrap still improves on the asymptotic LR test by
bringing the empirical rejection frequency close to the chosen nominal level.

Focusing on our bootstrap misspeci�cation approach, in the bottom panels of Table
TS7 and Table TS8 the rejection frequencies of the normality tests are in the range
5.3%-30% for T=100 ( ~B = 10) and in the range 4.5%-40% for T=250 ( ~B = 20). In
particular, the rejection frequency associated with the normality of �̂2;�a;T is 29.5% and
39.5%, respectively. Based on these evidences, we can conclude that conditionally on
the calibrated parameters, Andrews and Mikusheva�s (2015) DSGE model with parame-
ters �2:=(�; �; �; �2a; �

2
u)
0 does not meet the regularity conditions that endure standard

asymptotic inference. However, albeit some parameters are a¤ected by weak identi�-
cation issues, bootstrap-based �nite sample QML inference seems to be still reliable in
this model.

TS.5.3 More on the An and Schorfheide�s (2007) DSGE model

This section completes the results of the Monte Carlo experiment discussed in Section
5 of ACF. Table 1 in ACF refers to AS-DGP1 version of An and Schorfheide�s (2007)
and summarizes results obtained with T=100. Table TS9 in this technical supplement
extends the analysis to the case T=250. Table 2 in ACF refers to AS-DGP2 version of
An and Schorfheide�s (2007) and summarizes results obtained with T=100. Table TS10
in this technical supplement extends results to the case T=250.

The results in Tables TS9-TS10 lead us to the same conclusions as in Section 5 of
ACF.

TS.6 Further empirical results

In this section, we focus on the empirical results summarized in Section 6 and Table
3 of ACF. It is instructive for our purposes to compare the results obtained for the
models AS-M1 and AS-M2 using our bootstrap approach with what one would obtain
using identi�cation-robust methods.

Consider model AS-M1 �rst. The unknown parameters are in �1:= (�; �r; �
2
g)
0
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(dim(�1)=3). Following Guerron-Quintana et al. (2013), we consider the �new�testing
problem

H00 : � = ���1 = g(��1) for some �1 = ��1 2 PD1 against H01 : � 6= ���1 ;

where ��1 is a �guess�about the true value of �1, and PD1 is the subset of the determinacy
region of the parameter space PD which involves the elements of �1. The composite
null hypothesis H00 establishes that the CER are valid in correspondence of the (known)
parameter point �1=��1 2 PD1 . Thus, the evaluation of the log-likelihood of the DSGE
model under H00 does not require any estimation procedure. Under H

0
0, the QLR test

QLRT (��1) :=�2[`o;T (���1)� `o;T (�̂T )] is asymptotically pivotal and �
2
dim(�)-distributed

regardless of the strength of identi�cation. The null H00 is not rejected at the 100�%
nominal signi�cance level if QLRT (��1) < c�

�2
dim(�)

. Considering a set of possible choices

�1=��1 2 PD1 , the inversion of the test for H00 against H01 produces the identi�cation-
robust con�dence set CLR1�� := f��1 2 PD1 , QLRT (��1) < c�

�2
dim(�)

g. The set CLR1�� contains

all parameters points in PD1 for which the CER are not rejected at the nominal level �,
and has 100(1� �)% asymptotic coverage. The CER implied by the DSGE model are
rejected when CLR1�� is empty and accepted otherwise. Obviously, CLR1�� will be empty
when QLRT (�̂1;T ):=min��12PD1

QLRT (��1) � c�
�2
dim(�)

.

From the upper panel of Table 3 we notice that as concerns model AS-M1, the
QLR test for the CER, equal to 176.11, implies the rejection of the CER when the
5% asymptotic critical value from the �213 distribution (22.36) is employed, meaning
that whatever method a practitioner uses to invert the test, CLR0:95 will be empty. Thus,
while our bootstrap approach provides some empirical support to the estimated DSGE
model, both �standard�and identi�cation-robust methods rejected model AS-M1 at the
5% nominal signi�cance level.

Consider model AS-M2 now. The unknown parameters are in �2:=(�;  1; �r; �
2
z; �

2
g; �

2
r)
0

(dim(�2)=6). From the lower panel of Table 3 we note that the QLR test for the
CER equals 83.25 and implies rejection of the CER using the 5% asymptotic critical
value. That is, the 95% identi�cation-robust con�dence set CLR0:95 is empty. An empty
identi�cation-robust con�dence set is also obtained at the 90% (nominal) asymptotic
coverage (CLR0:90).

References

An, S., Schorfheide, F. (2007), Bayesian analysis of DSGE models, Econometric Re-
views 26, 113-172.

Anderson, B.D.O. and Moore, J. (1979), Optimal �ltering, Englewood Cli¤s, NJ:
Prentice-Hall.

Andreasen, M. M. (2010), How to maximize the likelihood function for a DSGE model,
Computational Economics 35, 127-154.

Andrews, D.W.K., Cheng, X. (2012), Estimation and inference with weak, semi-strong,
and strong identi�cation, Econometrica 80, 2153-2211.

16



Andrews, I., Mikusheva, A. (2015), Maximum likelihood inference in weakly identi�ed
dynamic stochastic general equilibrium models, Quantitative Economics 6, 123-
152.

Angelini, G., Cavaliere, G. and Fanelli, L. (2016), Bootstrapping DSGE models.

Binder, M., Pesaran, M. H. (1995), Multivariate rational expectations models and
macroeconomic modelling: A review and some new results, in M. Pesaran and M.
Wickens (eds.) Handbook of Applied Econometrics, Oxford: Blackwell Publishing
Ltd, 139-187.

Fernández-Villaverde, J., Rubio-Ramírez, J., Sargent, T., Watson, M. (2007), ABCs
(and Ds) of understanding VARs, American Economic Review 97, 1021-1026.

Guerron-Quintana P, Inoue A, Kilian L. (2013), Frequentist inference in weakly iden-
ti�ed DSGE models, Quantitiative Economics 4, 197-229.

Iskrev, N. (2008), Evaluating the information matrix in linearized DSGE models, Eco-
nomic Letters 99, 607-610.

Iskrev, N. (2010), Local identi�cation in DSGE models, Journal of Monetary Eco-
nomics 57, 189-202.

Jarque, C. M., Bera, A. K. (1987), A test for normality of observations and regression
residuals, International Statistical Review 55, 163-172.

Komunjer, I., Ng, S. (2011), Dynamic identi�cation of dynamic stochastic general
equilibrium models, Econometrica 79, 1995-2032.

Mavroeidis, S. (2005), Identi�cation issues in forward-looking models estimated by
GMM, with an application to the Phillips curve, Journal of Money Credit and
Banking 37, 421-448.

Morris, S. (2016), DSGE pileups, Workinng Paper, Department of Economics, Bowdoin
College.

Shapiro, S. S., Wilk, M. B. (1965), An analysis of variance test for normality (complete
samples), Biometrika 52, 591-611.

Qu, Z., Tkachenko, D. (2012), Identi�cation and frequency domain quasi-maximum
likelihood estimation of linearized dynamic stochastic general equilibrium models,
Quantitative Economics 3, 95-132.

Uhlig, H. (1999), A Toolkit for Analyzing Nonlinear Dynamic Stochastic Models Easily,
in R. Marimon and A. Scott (eds.), Computational Methods for the Study of
Dynamic Economies, Oxford: Oxford University Press.

Wooldridge, J.M. (1994), Estimation and inference for dependent processes, Handbook
of Econometrics, R.F. Engle and D.L. McFadden (eds.), Vol. IV, Chap. 45.

17



TABLE TS1. MC experiment. Strong identi�cation, ARMA(1,1) model. ML esti-
mates and rejection frequencies of LR test.

DGP: ARMA(1,1), �0 = 0:4; �0 = �0:76
H
00

0 : � = 0:4 vs H
00

1 : � 6= 0:4
T=100 Monte Carlo Bootstrap (B=99)

under H
00

0 under H
00

1 under H
00

0 under H
00

1

�̂T (= �̂T ) �̂T �̂T �̂
�
T (= �̂

�
T ) �̂�T �̂

�
T

average -0.7542 0.4089 -0.7597 -0.7495 0.4089 -0.7541
s.e. 0.0949 0.1487 0.1040 0.0924 0.1508 0.1012

Hessian-based s.e. 0.0948 0.1418 0.1022 0.0961 0.1586 0.1077
Rej(LRT ) = 0:0522 Rej(LR�T ) = 0:0400

T=250 Monte Carlo Bootstrap (B=249)
under H

00

0 under H
00

1 under H
00

0 under H
00

1

�̂T (= �̂T ) �̂T �̂T �̂
�
T (= �̂

�
T ) �̂�T �̂

�
T

average -0.7588 0.4028 -0.7602 -0.7574 0.4039 -0.7591
s.e. 0.0585 0.0893 0.0632 0.0588 0.0903 0.0632

Hessian-based s.e. 0.0594 0.0976 0.0674 0.0598 0.0984 0.0667
Rej(LRT ) = 0:0493 Rej(LR�T ) = 0:0470

NOTES: Results are based on M=1000 Monte Carlo replications. �Average�is the average
of the ML estimator across Monte Carlo replications. �MC s.e.� indicates the standard errors
computed across Monte Carlo replications. �Hessian-based s.e.� indicates the average across
Monte Carlo replications of the analytic standard errors computed from the Hessian matrix.
�Rej(�)�denotes rejection frequency (across Monte Carlo simulations). LRT is the LR test for
H000 vs H

00
1 . LR

�
T is the bootstrap analog of LRT and is obtained with B replications.
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TABLE TS2a. MC experiment. Strong identi�cation, ARMA(1,1) model. Rejection
frequencies of misspeci�cation normality tests. Restricted bootstrap.

DGP: ARMA(1,1), �0 = 0:4; �0 = �0:76
H
00

0 : � = 0:4 vs H
00

1 : � 6= 0:4

T =100 ~B = 10 ~B = 20 ~B = 30 ~B = 40 ~B = 99

Shapiro-Wilk
�̂
�
T (= �̂

�
T ) under H

00

0 0.0520 0.0670 0.0780 0.0960 0.1400
�̂�T under H

00

1 0.0800 0.1130 0.1280 0.1430 0.2310
�̂
�
T under H

00

1 0.0690 0.0660 0.0600 0.680 0.0720
Jarque-Bera

�̂
�
T (= �̂

�
T ) under H

00

0 0.0490 0.0460 0.0640 0.0810 0.1160
�̂�T under H

00

1 0.0710 0.1040 0.1250 0.1370 0.2320
�̂
�
T under H

00

1 0.0510 0.0540 0.0590 0.0690 0.0750

T =250 ~B = 20 ~B = 30 ~B = 40 ~B = 249

Shapiro-Wilk
�̂
�
T (= �̂

�
T ) under H

00

0 0.0670 0.0710 0.0790 0.1370
�̂�T under H

00

1 0.1020 0.0920 0.0860 0.1910
�̂
�
T under H

00

1 0.0630 0.0550 0.0660 0.0770
Jarque-Bera

�̂
�
T (= �̂

�
T ) underH

00

0 0.0510 0.0590 0.0620 0.1230
�̂�T under H

00

1 0.0770 0.0950 0.0930 0.2030
�̂
�
T under H

00

1 0.0480 0.0550 0.0520 0.0550

NOTES: Results are based on M=1000 Monte Carlo replications. Rejection frequencies
refer to Shapiro and Wilk�s (1965) and Jarque and Bera�s (1987) normality test. Normality
tests tests are computed using the 5% nominal signi�cance level.
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TABLE TS2b. MC experiment. Strong identi�cation, ARMA(1,1) model. Rejection
frequencies of misspeci�cation normality tests. Unrestricted bootstrap.

DGP: ARMA(1,1), �0 = 0:4; �0 = �0:76
H
00

0 : � = 0:4 vs H
00

1 : � 6= 0:4

T =100 ~B = 10 ~B = 20 ~B = 30 ~B = 40 ~B = 99

Shapiro-Wilk
�̂
�
T (= �̂

�
T ) under H

00

0 0.0480 0.0840 0.0740 0.1000 0.1360
�̂�T under H

00

1 0.0860 0.1440 0.1780 0.2000 0.2880
�̂
�
T under H

00

1 0.0420 0.0600 0.0720 0.1040 0.0960
Jarque-Bera

�̂
�
T (= �̂

�
T ) under H

00

0 0.0480 0.0740 0.0700 0.0840 0.1240
�̂�T under H

00

1 0.0820 0.1240 0.1440 0.1780 0.2880
�̂
�
T under H

00

1 0.0420 0.0720 0.0680 0.0960 0.0740

T =250 ~B = 20 ~B = 30 ~B = 40 ~B = 249

Shapiro-Wilk
�̂
�
T (= �̂

�
T ) under H

00

0 0.0620 0.0580 0.0620 0.1460
�̂�T under H

00

1 0.0900 0.0960 0.0940 0.1800
�̂
�
T under H

00

1 0.0500 0.0660 0.0560 0.0580
Jarque-Bera

�̂
�
T (= �̂

�
T ) under H

00

0 0.0480 0.0500 0.0560 0.1280
�̂�T under H

00

1 0.0740 0.0940 0.0900 0.2040
�̂
�
T under H

00

1 0.0460 0.0500 0.0440 0.0660

NOTES: See Table TS2a.
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TABLE TS3. MC experiment. Weak identi�cation, ARMA(1,1) model. ML esti-
mates and rejection frequencies of LR test.

DGP: ARMA(1,1), �0 = 0:4; �0 = �0:05
H
00

0 : � = 0:4 vs H
00

1 : � 6= 0:4
T=100 Monte Carlo Bootstrap (B=99)

under H
00

0 under H
00

1 under H
00

0 under H
00

1

�̂T (= �̂T ) �̂T �̂T �̂
�
T (= �̂

�
T ) �̂�T �̂

�
T

average -0.0584 0.1856 -0.0626 -0.0666 0.2261 -0.0683
s.e. 0.0949 0.4865 0.1149 0.0927 0.4813 0.1085

Hessian-based s.e. 0.0950 0.4362 0.0939 0.0964 2.3251 0.2864
Rej(LRT ) = 0:0453 Rej(LR�T ) = 0:0410

T=250 Monte Carlo Bootstrap (B=249)
under H

00

0 under H
00

1 under H
00

0 under H
00

1

�̂T (= �̂T ) �̂T �̂T �̂
�
T (= �̂

�
T ) �̂�T �̂

�
T

average -0.0537 0.2021 -0.0586 -0.0576 0.2291 -0.0598
s.e. 0.0593 0.4700 0.0672 0.0591 0.4699 0.0664

Hessian-based s.e. 0.0596 0.4362 0.0624 0.0600 2.1502 0.1558
Rej(LRT ) = 0:0532 Rej(LR�T ) = 0:0480

NOTES: See Table TS1.
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TABLE TS4a. MC experiment. Weak identi�cation, ARMA(1,1) model. Rejection
frequencies of misspeci�cation normality tests. Restricted bootstrap.

DGP: ARMA(1,1), �0 = 0:4; �0 = �0:05
H
00

0 : � = 0:4 vs H
00

1 : � 6= 0:4

T =100 ~B = 10 ~B = 20 ~B = 30 ~B = 40 ~B = 99

Shapiro-Wilk
�̂
�
T (= �̂

�
T ) under H

00

0 0.0580 0.0600 0.0680 0.0760 0.1150
�̂�T under H

00

1 0.1880 0.4540 0.7070 0.8640 0.9980
�̂
�
T under H

00

1 0.0850 0.1090 0.1440 0.1670 0.3180
Jarque-Bera

�̂
�
T (= �̂

�
T ) under H

00

0 0.0530 0.0460 0.0580 0.0600 0.0970
�̂�T under H

00

1 0.0720 0.1070 0.1500 0.2040 0.9530
�̂
�
T under H

00

1 0.0640 0.0780 0.0810 0.0960 0.1760

T =250 ~B = 20 ~B = 30 ~B = 40 ~B = 249

Shapiro-Wilk
�̂
�
T (= �̂

�
T ) under H

00

0 0.0720 0.0640 0.0790 0.1230
�̂�T under H

00

1 0.4250 0.6600 0.8340 1.0000
�̂
�
T under H

00

1 0.1100 0.1670 0.1810 0.6860
Jarque-Bera

�̂
�
T (= �̂

�
T ) under H

00

0 0.0470 0.0530 0.0570 0.0980
�̂�T under H

00

1 0.1310 0.1750 0.2330 1.0000
�̂
�
T under H

00

1 0.0780 0.0960 0.1120 0.4240

NOTES: See Table TS2a.
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TABLE TS4b. MC experiment. Weak identi�cation, ARMA(1,1) model. Rejection
frequencies of misspeci�cation normality tests. Unrestricted bootstrap.

DGP: ARMA(1,1), �0 = 0:4; �0 = �0:05
H
00

0 : � = 0:4 vs H
00

1 : � 6= 0:4

T =100 ~B = 10 ~B = 20 ~B = 30 ~B = 40 ~B = 99

Shapiro-Wilk
�̂
�
T (= �̂

�
T ) under H

00

0 0.0700 0.0920 0.1180 0.1380 0.2540
�̂�T under H

00

1 0.2940 0.5360 0.7160 0.8280 0.9820
�̂
�
T under H

00

1 0.1100 0.1380 0.1940 0.2180 0.4520
Jarque-Bera

�̂
�
T (= �̂

�
T ) under H

00

0 0.0420 0.0760 0.0980 0.1200 0.2240
�̂�T under H

00

1 0.1700 0.1840 0.2380 0.3080 0.8860
�̂
�
T under H

00

1 0.0760 0.1060 0.1300 0.1460 0.2800

T =250 ~B = 20 ~B = 30 ~B = 40 ~B = 249

Shapiro-Wilk
�̂
�
T (= �̂

�
T ) under H

00

0 0.0760 0.1000 0.0980 0.2980
�̂�T under H

00

1 0.5220 0.7080 0.8180 0.9900
�̂
�
T under H

00

1 0.1180 0.1820 0.2060 0.7540
Jarque-Bera

�̂
�
T (= �̂

�
T ) under H

00

0 0.0700 0.0620 0.0820 0.2760
�̂�T under H

00

1 0.1900 0.2420 0.3200 0.9780
�̂
�
T under H

00

1 0.0860 0.1080 0.1260 0.5020

NOTES: See Table TS2a.
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TABLE TS5. MC experiment. AM-DGP1

b0 �0 �0 �x;0 ��;0 �0 �0 �20 �2u;0 �2a;0
0.99 0.10 0 0 1

b0
0.85 0.35 0 0.20 0.30

T=100 Monte Carlo Bootstrap (B=99)
�̂1;T s.e. s.e.(Hess.) �̂

�
1;T s.e.

� 0.1008 0.0068 0.0068 0.1022 0.0074
� 0.8488 0.0097 0.0104 0.8470 0.0100
� 0.3337 0.0945 0.0990 0.3195 0.0950
�2u 0.2049 0.0443 0.0486 0.2088 0.0472

Rej(LRT ) = 0:0479 Rej(LR�T ) = 0:0272

Normality, JB ~B=10 ~B=20 ~B=30 ~B=40 ~B=99
�̂�T 0.1067 0.1548 0.1987 0.2594 0.4895
�̂�T 0.0837 0.1234 0.1548 0.1967 0.3138
�̂
�
T 0.0544 0.0544 0.0565 0.0649 0.0941

�̂2;�u;T 0.0795 0.1088 0.1569 0.1946 0.3515

Normality, JB (Proc.) ~B=10 ~B=20 ~B=30 ~B=40 ~B=99
�̂�T 0.1799 0.3326 0.3975 0.4519 0.6276
�̂�T 0.1464 0.2615 0.3033 0.3661 0.4916
�̂
�
T 0.0481 0.0962 0.1213 0.1695 0.3222

�̂2;�u;T 0.1695 0.2741 0.3013 0.3703 0.5146

NOTES: Results are based on M=1000 Monte Carlo replications. Upper panel: �̂�1;T� is
the average of the ML estimator across Monte Carlo replications; �s.e.� indicates the standard
errors computed across Monte Carlo replications; �s.e.(Hess.)� indicates the average of the
Hessian-based standard errors across Monte Carlo replications; �̂�

�
1;T� is the average across

Monte Carlo repetitions of the bootstrap ML estimators obtained as average of the bootstrap
replicates �̂

�
1;T :1; :::; �̂

�
1;T :B ; the log-likelihood maximization under both H0 (with the CER) and

H1 (without the CER) is obtained by the combining the Kalman �lter with the �CMA-ES�
algorithm; �Rej(�)� denotes rejection frequency across Monte Carlo replications, LRT is the
LR test for H0 against H1 and is computed using the 5% nominal signi�cance level; LR�T is
the bootstrap analog of LRT based on B bootstrap repetitions. Lower panel: �Normality,
JB�reports rejection frequencies associated with Jarque and Bera�s (1987) normality tests of
the ~B bootstrap repetitions of the structural parameter estimators; �Normality, JB (Proc.)�
reports rejection frequencies associated with the procedure described in Remark 4.7 of ACF;
the N =int(B= ~B) sub-samples used for the procedure in Remark 4.7 are not overlapping; all
normality tests are computed using the 5% nominal signi�cance level.
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TABLE TS6. MC experiment. AM-DGP1

b0 �0 �0 �x;0 ��;0 �0 �0 �20 �2u;0 �2a;0
0.99 0.10 0 0 1

b0
0.85 0.35 0 0.20 0.30

T=250 Monte Carlo Bootstrap (B=249)
�̂1;T s.e. s.e.(Hess.) �̂

�
1;T s.e.

� 0.1004 0.0042 0.0042 0.1010 0.0043
� 0.8494 0.0060 0.0060 0.8487 0.0061
� 0.3455 0.0597 0.0621 0.3395 0.0594
�2u 0.2006 0.0284 0.0288 0.2020 0.0278

Rej(LRT ) = 0:0583 Rej(LR�T ) = 0:0471

Normality, JB ~B=20 ~B=30 ~B=40 ~B=249
�̂�T 0.0724 0.0881 0.1115 0.3503
�̂�T 0.0568 0.0724 0.0920 0.2270
�̂
�
T 0.0450 0.0665 0.0705 0.1233

�̂2;�u;T 0.0822 0.0959 0.1037 0.3875

Normality, JB (Bonf.) ~B=20 ~B=30 ~B=40 ~B=249
�̂�T 0.1057 0.1879 0.2074 0.5988
�̂�T 0.0802 0.1389 0.1683 0.4951
�̂
�
T 0.0802 0.0724 0.1057 0.4344

�̂2;�u;T 0.1468 0.1703 0.1996 0.6125

NOTES: See Table TS5.
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TABLE TS7. MC experiment. AM-DGP2

b0 �0 �0 �x;0 ��;0 �0 �0 �20 �2u;0 �2a;0
0.99 0.10 0 0 1

b0
0.40 0.35 0 0.20 0.30

T=100 Monte Carlo Bootstrap (B=99)
�̂2;T s.e. s.e.(Hess.) �̂

�
2;T s.e.

� 0.1019 0.0112 0.0168 0.1036 0.0113
� 0.4120 0.0653 0.1024 0.4115 0.0648
� 0.3216 0.0706 0.1228 0.3103 0.0756
�2a 0.4656 0.4199 0.4748 0.4043 0.3575
�2u 0.1887 0.1180 0.1632 0.2081 0.1086

Rej(LRT ) = 0:0363 Rej(LR�T ) = 0:0405

Normality, JB ~B=10 ~B=20 ~B=30 ~B=40 ~B=99
�̂�T 0.0531 0.0922 0.0852 0.0922 0.1746
�̂�T 0.0768 0.0894 0.1075 0.1299 0.2709
�̂
�
T 0.0712 0.0936 0.1201 0.1187 0.2137

�̂2;�a;T 0.2947 0.3534 0.5209 0.8156 0.9916
�̂2;�u;T 0.0880 0.1034 0.1159 0.1453 0.2989

Normality, JB (Bonf.) ~B=10 ~B=20 ~B=30 ~B=40 ~B=99
�̂�T 0.0587 0.1313 0.1662 0.2304 0.3743
�̂�T 0.0894 0.1676 0.2151 0.2709 0.4525
�̂
�
T 0.0824 0.1676 0.1997 0.2737 0.4399

�̂2;�a;T 0.4609 0.4721 0.4791 0.5419 0.9916
�̂2;�u;T 0.1229 0.1662 0.2039 0.2556 0.4637

NOTES: See Table TS5 and replace �̂1;T (�̂
�
1;T ) with �̂2;T (�̂

�
2;T )
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TABLE TS8. MC experiment. AM-DGP2

b0 �0 �0 �x;0 ��;0 �0 �0 �20 �2u;0 �2a;0
0.99 0.10 0 0 1

b0
0.40 0.35 0 0.20 0.30

T=250 Monte Carlo Bootstrap (B=249)
�̂2;T s.e. s.e.(Hess.) �̂

�
2;T s.e.

� 0.1004 0.0070 0.0075 0.1012 0.0075
� 0.4134 0.0469 0.0494 0.4168 0.0446
� 0.3377 0.0429 0.0514 0.3300 0.0483
�2a 0.4312 0.3911 0.2727 0.4111 0.3273
�2u 0.1818 0.0903 0.0874 0.1888 0.0848

Rej(LRT ) = 0:0105 Rej(LR�T ) = 0:0245

Normality, JB ~B=20 ~B=30 ~B=40 ~B=249
�̂�T 0.0455 0.0490 0.0699 0.2203
�̂�T 0.0839 0.1294 0.1399 0.4580
�̂
�
T 0.0909 0.1084 0.1364 0.3881

�̂2;�a;T 0.3951 0.5175 0.8287 0.9930
�̂2;�u;T 0.1573 0.1888 0.2238 0.8042

Normality, JB (Bonf.) ~B=20 ~B=30 ~B=40 ~B=249
�̂�T 0.0804 0.0979 0.1294 0.4371
�̂�T 0.1503 0.1818 0.2378 0.6224
�̂
�
T 0.1958 0.1993 0.2832 0.6434

�̂2;�a;T 0.4266 0.4196 0.4336 0.9930
�̂2;�u;T 0.1783 0.2063 0.2552 0.8287

NOTES: See Table TS5 and replace �̂1;T (�̂
�
1;T ) with �̂2;T (�̂

�
2;T ).
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TABLE TS9. MC experiment. AS-DGP1

�0 �0  1;0  2;0 �0 �r;0 �g;0 �z;0 �2r;0 �2g;0 �2z;0
2 0.33 1.5 0.125 0.9975 0.75 0.95 0.90 0.04 0.36 0.09

T=250 Monte Carlo Bootstrap (B=249)
�̂1;T s.e. s.e.(Hess.) �̂

�
1;T s.e.

� 0.3318 0.0244 0.0250 0.3329 0.0257
�r 0.7500 0.0158 0.0110 0.7490 0.0116
�2g 0.3562 0.0328 0.0319 0.3551 0.0308

Rej(LRT ) = 0:0660 Rej(LR�T ) = 0:0320

Normality, JB ~B=20 ~B=30 ~B=40 ~B=249
�̂�T 0.0880 0.0880 0.1120 0.1840
�̂�r;T 0.0480 0.0880 0.0880 0.0720
�̂2;�g;T 0.0640 0.0480 0.0560 0.0960

Normality, JB (Proc.) ~B=20 ~B=30 ~B=40 ~B=249
�̂�T 0.0880 0.1360 0.1520 0.1840
�̂�r;T 0.0240 0.0400 0.0480 0.0720
�̂2;�g;T 0.0640 0.0320 0.0400 0.0960

NOTES: Results are based on M=500 Monte Carlo replications. Upper panel: �̂�1;T�is the
average of the ML estimator across Monte Carlo replications; �s.e.� indicates the standard errors
computed across Monte Carlo replications; �s.e.(Hess.)� indicates the average of the Hessian-
based standard errors across Monte Carlo replications; �̂�

�
1;T�is the average across Monte Carlo

repetitions of the bootstrap ML estimators obtained as average of �̂
�
1;T :1; :::; �̂

�
1;T :B ; the log-

likelihood maximization under both H0 (with the CER) and H1 (without the CER) is obtained
by the combining the Kalman �lter with the �CMA-ES�algorithm; �Rej(�)�denotes rejection
frequency across Monte Carlo replications, LRT is the LR test for H0 against H1 and is computed
using the 5% nominal signi�cance level and LR�T is the bootstrap analog of LRT based on B
bootstrap repetitions. Lower panel: �Normality, JB� reports rejection frequencies associated
with Jarque and Bera�s (1987) normality tests of the ~B bootstrap repetitions of the structural
parameter estimators; �Normality, JB� (Proc.) reports rejection frequencies associated with
the procedure described in Remark 4.7; the N =int(B= ~B) sub-samples used for the procedure
in Remark 4.7 are not overlapping; all normality tests are computed using the 5% nominal
signi�cance level.
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TABLE TS10. MC experiment. AS-DGP2

�0 �0  1;0  2;0 �0 �r;0 �g;0 �z;0 �2r;0 �2g;0 �2z;0
2 0.33 1.5 0.125 0.9975 0.75 0.95 0.90 0.04 0.36 0.09

T=250 Monte Carlo Bootstrap (B=249)
�̂2;T s.e. s.e.(Hess.) �̂

�
2;T s.e.

� 0.3338 0.0367 0.0363 0.3419 0.0389
 1 1.5049 0.0982 0.0745 1.5187 0.1067
�r 0.7500 0.0158 0.0110 0.7500 0.0167
�2r 0.0398 0.0038 0.0037 0.0385 0.0038
�2g 0.3562 0.0328 0.0319 0.3530 0.0306
�2z 0.0906 0.0143 0.0121 0.0898 0.0149

Rej(LRT ) = 0:0640 Rej(LR�T ) = 0:0403

Normality, JB ~B=20 ~B=30 ~B=40 ~B=249
�̂�T 0.1007 0.1141 0.1208 0.5906
 ̂
�
1;T 0.1208 0.0872 0.1074 0.5168
�̂�r;T 0.0403 0.0470 0.0336 0.1208
�̂2;�r;T 0.0336 0.0470 0.0604 0.2081
�̂2;�g;T 0.0604 0.0470 0.0336 0.1208
�̂2;�z;T 0.0872 0.0403 0.0604 0.2617

Normality, JB (Proc.) ~B=20 ~B=30 ~B=40 ~B=249
�̂�T 0.1074 0.1342 0.1544 0.5906
 ̂
�
1;T 0.2550 0.3087 0.3289 0.5168
�̂�r;T 0.0537 0.0940 0.0671 0.1208
�̂2;�r;T 0.0805 0.1007 0.0604 0.2081
�̂2;�g;T 0.0604 0.0537 0.0470 0.1208
�̂2;�z;T 0.0671 0.0805 0.1074 0.2617

NOTES: See Table TS9 and replace �̂1;T (�̂
�
1;T ) with �̂2;T (�̂

�
2;T ).
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