53 research outputs found

    Membrane trafficking in breast cancer progression: protein kinase D comes into play

    Get PDF
    Protein kinase D (PKD) is a serine/threonine kinase family that controls important cellular functions, most notably playing a key role in the secretory pathway at the trans-Golgi network. Aberrant expression of PKD isoforms has been found mainly in breast cancer, where it promotes various cellular processes such as growth, invasion, survival and stem cell maintenance. In this review, we discuss the isoform-specific functions of PKD in breast cancer progression, with a particular focus on how the PKD controlled cellular processes might be linked to deregulated membrane trafficking and secretion. We further highlight the challenges of a therapeutic approach targeting PKD to prevent breast cancer progression

    Tailored parameter optimization methods for ordinary differential equation models with steady-state constraints

    Get PDF
    Background: Ordinary differential equation (ODE) models are widely used to describe (bio-)chemical and biological processes. To enhance the predictive power of these models, their unknown parameters are estimated from experimental data. These experimental data are mostly collected in perturbation experiments, in which the processes are pushed out of steady state by applying a stimulus. The information that the initial condition is a steady state of the unperturbed process provides valuable information, as it restricts the dynamics of the process and thereby the parameters. However, implementing steady-state constraints in the optimization often results in convergence problems. Results: In this manuscript, we propose two new methods for solving optimization problems with steady-state constraints. The first method exploits ideas from optimization algorithms on manifolds and introduces a retraction operator, essentially reducing the dimension of the optimization problem. The second method is based on the continuous analogue of the optimization problem. This continuous analogue is an ODE whose equilibrium points are the optima of the constrained optimization problem. This equivalence enables the use of adaptive numerical methods for solving optimization problems with steady-state constraints. Both methods are tailored to the problem structure and exploit the local geometry of the steady-state manifold and its stability properties. A parameterization of the steady-state manifold is not required. The efficiency and reliability of the proposed methods is evaluated using one toy example and two applications. The first application example uses published data while the second uses a novel dataset for Raf/MEK/ERK signaling. The proposed methods demonstrated better convergence properties than state-of-the-art methods employed in systems and computational biology. Furthermore, the average computation time per converged start is significantly lower. In addition to the theoretical results, the analysis of the dataset for Raf/MEK/ERK signaling provides novel biological insights regarding the existence of feedback regulation. Conclusion: Many optimization problems considered in systems and computational biology are subject to steady-state constraints. While most optimization methods have convergence problems if these steady-state constraints are highly nonlinear, the methods presented recover the convergence properties of optimizers which can exploit an analytical expression for the parameter-dependent steady state. This renders them an excellent alternative to methods which are currently employed in systems and computational biology

    Regulation of secretory transport by protein kinase D–mediated phosphorylation of the ceramide transfer protein

    Get PDF
    Protein kinase D (PKD) has been identified as a crucial regulator of secretory transport at the trans-Golgi network (TGN). Recruitment and activation of PKD at the TGN is mediated by the lipid diacylglycerol, a pool of which is generated by sphingomyelin synthase from ceramide and phosphatidylcholine. The nonvesicular transfer of ceramide from the endoplasmic reticulum to the Golgi complex is mediated by the lipid transfer protein CERT (ceramide transport). In this study, we identify CERT as a novel in vivo PKD substrate. Phosphorylation on serine 132 by PKD decreases the affinity of CERT toward its lipid target phosphatidylinositol 4-phosphate at Golgi membranes and reduces ceramide transfer activity, identifying PKD as a regulator of lipid homeostasis. We also show that CERT, in turn, is critical for PKD activation and PKD-dependent protein cargo transport to the plasma membrane. Thus, the interdependence of PKD and CERT is key to the maintenance of Golgi membrane integrity and secretory transport

    Structural requirements for localization and activation of protein kinase C μ (PKCμ) at the Golgi compartment

    Get PDF
    We here describe the structural requirements for Golgi localization and a sequential, localization-dependent activation process of protein kinase C (PKC)μ involving auto- and transphosphorylation. The structural basis for Golgi compartment localization was analyzed by confocal microscopy of HeLa cells expressing various PKCμ–green fluorescent protein fusion proteins costained with the Golgi compartment–specific markers p24 and p230. Deletions of either the NH2-terminal hydrophobic or the cysteine region, but not of the pleckstrin homology or the acidic domain, of PKCμ completely abrogated Golgi localization of PKCμ. As an NH2-terminal PKCμ fragment was colocalized with p24, this region of PKCμ is essential and sufficient to mediate association with Golgi membranes. Fluorescence recovery after photobleaching studies confirmed the constitutive, rapid recruitment of cytosolic PKCμ to, and stable association with, the Golgi compartment independent of activation loop phosphorylation. Kinase activity is not required for Golgi complex targeting, as evident from microscopical and cell fractionation studies with kinase-dead PKCμ found to be exclusively located at intracellular membranes. We propose a sequential activation process of PKCμ, in which Golgi compartment recruitment precedes and is essential for activation loop phoshorylation (serines 738/742) by a transacting kinase, followed by auto- and transphosphorylation of NH2-terminal serine(s) in the regulatory domain. PKCμ activation loop phosphorylation is indispensable for substrate phosphorylation and thus PKCμ function at the Golgi compartment

    Protein Kinase D regulates several aspects of development in Drosophila melanogaster

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Protein Kinase D (PKD) is an effector of diacylglycerol-regulated signaling pathways. Three isoforms are known in mammals that have been linked to diverse cellular functions including regulation of cell proliferation, differentiation, motility and secretory transport from the trans-Golgi network to the plasma membrane. In <it>Drosophila</it>, there is a single PKD orthologue, whose broad expression implicates a more general role in development.</p> <p>Results</p> <p>We have employed tissue specific overexpression of various PKD variants as well as tissue specific RNAi, in order to investigate the function of the PKD gene in <it>Drosophila</it>. Apart from a wild type (WT), a kinase dead (kd) and constitutively active (SE) <it>Drosophila </it>PKD variant, we also analyzed two human isoforms hPKD2 and hPKD3 for their capacity to substitute PKD activity in the fly. Overexpression of either WT or kd-PKD variants affected primarily wing vein development. However, overexpression of SE-PKD and PKD RNAi was deleterious. We observed tissue loss, wing defects and degeneration of the retina. The latter phenotype conforms to a role of PKD in the regulation of cytoskeletal dynamics. Strongest phenotypes were larval to pupal lethality. RNAi induced phenotypes could be rescued by a concurrent overexpression of <it>Drosophila </it>wild type PKD or either human isoform hPKD2 and hPKD3.</p> <p>Conclusion</p> <p>Our data confirm the hypothesis that <it>Drosophila </it>PKD is a multifunctional kinase involved in diverse processes such as regulation of the cytoskeleton, cell proliferation and death as well as differentiation of various fly tissues.</p

    Sphingolipid metabolic flow controls phosphoinositide turnover at the trans Golgi network

    Get PDF
    Sphingolipids are membrane lipids, which are globally required for eukaryotic life. Sphingolipid composition varies among endomembranes with pre- and post-Golgi compartments being poor and rich in sphingolipids, respectively. Thanks to this different sphingolipid content, pre- and post-Golgi membranes serve different cellular functions. Nevertheless, how subcellular sphingolipid levels are maintained in spite of trafficking and metabolic fluxes is only partially understood. Here we describe a homeostatic control circuit that controls sphingolipid levels at the trans Golgi network. Specifically, we show that sphingomyelin production at the trans Golgi network triggers a signalling reaction leading to PtdIns(4)P dephosphorylation. Since PtdIns(4)P is required for cholesterol, and sphingolipid transport to the trans Golgi network, PtdIns(4)P consumption leads to the interruption of this transport in response to excessive sphingomyelin production. Based on this evidence we envisage a model where this homeostatic circuit maintains the lipid composition of trans Golgi network and thus of post-Golgi compartments constant, against instant fluctuations in the sphingolipid biosynthetic flow.Peer ReviewedPostprint (author's final draft

    Spatiotemporal control of intracellular membrane trafficking by Rho GTPases

    No full text
    As membrane-associated master regulators of cytoskeletal remodeling, Rho GTPases coordinate a wide range of biological processes such as cell adhesion, motility, and polarity. In the last years, Rho GTPases have also been recognized to control intracellular membrane sorting and trafficking steps directly; however, how Rho GTPase signaling is regulated at endomembranes is still poorly understood. In this review, we will specifically address the local Rho GTPase pools coordinating intracellular membrane trafficking with a focus on the endo- and exocytic pathways. We will further highlight the spatiotemporal molecular regulation of Rho signaling at endomembrane sites through Rho regulatory proteins, the GEFs and GAPs. Finally, we will discuss the contribution of dysregulated Rho signaling emanating from endomembranes to the development and progression of cancer
    corecore