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Abstract:  
 

Sphingolipids are membrane lipids, which are globally required for eukaryotic life. 

Sphingolipid composition varies among endomembranes with pre- and post-Golgi 

compartments being poor and rich in sphingolipids, respectively. Thanks to this different 

sphingolipid content, pre- and post-Golgi membranes serve different cellular functions. 

Nevertheless, how subcellular sphingolipid levels are maintained in spite of trafficking and 

metabolic fluxes is only partially understood. Here we describe a homeostatic control 

circuit that controls sphingolipid levels at the trans Golgi network. Specifically, we show 

that sphingomyelin production at the trans Golgi network triggers a signalling reaction 

leading to PtdIns(4)P dephosphorylation. Since PtdIns(4)P is required for cholesterol, and 

sphingolipid transport to the trans Golgi network, PtdIns(4)P consumption leads to the 

interruption of this transport in response to excessive sphingomyelin production. Based on 

this evidence we envisage a model where this homeostatic circuit maintains the lipid 

composition of trans Golgi network and thus of post-Golgi compartments constant, against 

instant fluctuations in the sphingolipid biosynthetic flow.  

  



Introduction:  
 
Sphingolipids (SLs) are bioactive components of eukaryotic membranes (Hannun & Obeid, 

2008). Several stimuli activate SL metabolic enzymes to produce SL species that act as 

first or second messengers in signalling programmes involved in irreversible cell fate 

decisions (Hannun & Obeid, 2008) and where their derangements often result in the 

development of cancer (Morad & Cabot, 2013). Not surprisingly then, SL metabolism is 

subjected to control modules that maintain its balance and prevent unintended drifts away 

from the steady state (Breslow & Weissman, 2010, Cantalupo, Zhang et al., 2015, Siow & 

Wattenberg, 2012, Vacaru, Tafesse et al., 2009). While these controls account for global 

SL homeostasis, SL biosynthesis involves the regional production and intracellular 

transport of different metabolites. As a consequence, SLs are unevenly distributed among 

cell membranes with post-Golgi membranes being rich and pre-Golgi membranes being 

poor in SLs (Holthuis & Menon, 2014, van Meer, Voelker et al., 2008). Importantly, 

enrichment of SLs and cholesterol at post-Golgi membranes increases membrane 

thickness and promotes the formation of membrane domains, both of which influence 

protein trafficking, and signalling and thus affect cell functions (Hannun & Obeid, 2008, 

Holthuis & Menon, 2014, Lingwood & Simons, 2010, Patterson, Hirschberg et al., 2008, 

Sharpe, Stevens et al., 2010, van Galen, Campelo et al., 2014). 

 

3A hub in the intracellular SLs trafficking is the Golgi complex (De Matteis & Luini, 2008, 

Hannun & Obeid, 2008, Holthuis & Menon, 2014). In fact, newly synthesized ceramide 

(Cer) in the endoplasmic reticulum (ER) is either transported in vesicles to the cis-Golgi 

pole, where it is converted to glucosylceramide (GlcCer), or delivered to the trans Golgi 

network (TGN) by the Cer transfer protein (CERT), for the production of sphingomyelin 

(SM) (Hanada, Kumagai et al., 2003). Similarly, cis-Golgi produced GlcCer progresses 

through Golgi cisternae to be converted to ganglio series glyco-SLs (GSLs) or is shunted 

to the TGN by the GlcCer transfer protein FAPP2 (D'Angelo, Polishchuk et al., 2007, 

D'Angelo, Uemura et al., 2013) where it is used to produce globo-series GSLs (D'Angelo 

et al., 2013) (Fig EV1). 

 

CERT and FAPP2 are recruited to the TGN by the phosphoinositide phosphatidylinositol-

4-phosphate (PtdIns(4)P) (D'Angelo, Vicinanza et al., 2008, Yamaji & Hanada, 2015). As a 

consequence, PtdIns(4)P is required for both SM and GSLs syntheses and enrichment at 



post-Golgi membranes (D'Angelo et al., 2013, Toth, Balla et al., 2006). PtdIns(4)P levels at 

the TGN depend on its production (by PtdIns-4-kinases) and consumption (by the ER-

localized PtdIns-4-phosphatase Sac1) (De Matteis, Wilson et al., 2013). The lipid transfer 

protein OSBP1 (Mesmin, Bigay et al., 2013) operates the transport of PtdIns(4)P from the 

TGN to the ER for its dephosphorylation by Sac1. This trafficking/ metabolic step is 

accomplished at specific sites of close apposition between ER and TGN defined as ER-

TGN membrane contact sites (MCSs) where it is coupled to the transport of cholesterol 

from the ER to the TGN (Mesmin et al., 2013). 

 

Once at the TGN, SLs and cholesterol are incorporated in membrane carriers and 

transported to post-Golgi destinations thus contributing to the establishment of the post-

Golgi membrane territory (De Matteis & Luini, 2008, Deng, Rivera-Molina et al., 2016, 

Klemm, Ejsing et al., 2009). Nevertheless, carriers formation at the TGN occurs 

continuously so that TGN membranes are subjected to constant dissipation and rebuilding 

according to secretory flux volume to the TGN (De Matteis & Luini, 2008). Moreover, 

fluctuations in SL de novo synthesis are reported under a variety of signalling and stress 

conditions (Hannun & Obeid, 2008). Thus it is not fully understood how cells keep the local 

TGN lipid composition (and as a consequence that of post-Golgi membranes) controlled in 

spite of uncoordinated changes in membrane trafficking and SL precursors supply.  

 

Here we have acutely modulated the SL flow to the Golgi complex and measured the 

effect on TGN composition and metabolic capacity. Our results indicate that the SL flow 

controls the PtdIns(4)P levels at the TGN. Specifically we describe a SL dependent 

signalling leading to PtdIns(4)P consumption and consequent release of PtdIns(4)P 

binding proteins from TGN membranes. Provided that PtdIns(4)P is required for SL and 

cholesterol transport to the TGN (D'Angelo et al., 2013, Toth et al., 2006), our findings 

reveal a negative feedback circuit that ensures the homeostatic control of SL levels at the 

TGN and at post-Golgi membranes.  

 

Results 
 

Adaptive metabolic response to SL flow 

 



To investigate how cells respond to acute changes in SL flow, HeLa cells were subjected 

to controlled perturbations in the SL metabolic input. Cells were first treated with 

Fumonisin B1, an inhibitor of Cer synthesis and SL recycling (Ogretmen, Pettus et al., 

2002, Wang, Norred et al., 1991) (FB1; 50µM for 24hours) or myriocin, a serine-palmitoyl 

transferase inhibitor (Horvath, Sutterlin et al., 1994) (2.5µM for 24 hours) to obliterate SL 

production (Fig EV1). Subsequently, cells were fed for 2 hours with increasing 

concentrations of cell permeable SL precursors N-hexanoyl-D-erythro-sphingosine (C6-D-

Cer; for FB1 treated cells) or D-erythro-sphingosine (D-Sph; for myriocin treated cells) and 

the amount of SL precursor converted either to SM or GlcCer was quantified. As shown in 

Fig 1A the fractions of SL precursors converted to SM or GlcCer were constant over a 

wide range (from 5nM to 1µM) of C6-D-Cer and D-Sph concentrations. In contrast, 

addition of higher amounts of SL precursors resulted in a sudden decrease of SL flux 

directed to SM synthesis, which was counterbalanced by an increase in GlcCer synthesis 

and Cer accumulation (Fig 1A). When the dynamics of this phenomenon were 

investigated by measuring C6-D-Cer (10µM) conversion to C6-D-SM or C6-D-GlcCer after 

short treatments (0-60 min), SM production was found to be very efficient at early time 

points (0 to 15 min) to be then reduced at later times. On the contrary GlcCer production 

was constant during the time course (Appendix figure S1). 
 

The fact that SM synthesis is promptly repressed at high SL precursor concentrations can 

be due either to saturation of enzymes synthesizing SM (i.e., mostly SM synthase 1 

[SMS1]) (Huitema, van den Dikkenberg et al., 2004) or of the system that supplies Cer to 

SMS1 (i.e., CERT (Hanada et al., 2003)). To discriminate between these possibilities we 

performed the experiment described in Fig 1A in cells pre-treated with Brefeldin A (BFA; 

5µg/mL). BFA redistributes Golgi membranes to the ER (Lippincott-Schwartz, Yuan et al., 

1989) and relocates SMS1 and GlcCer synthase (GCS) to this mixed ER-Golgi 

compartment (Appendix figure S2). Under these conditions, Cer is readily available to 

both GCS and SMS1 with no need for either vesicular or non-vesicular Cer transport 

(D'Angelo et al., 2013). As shown in Fig 1B BFA treatment resulted in increased SM 

synthesis at precursor concentrations > 1µM with no effects on GlcCer production, 

suggesting that the observed drop in SM synthesis (Fig 1A) is not simply due to saturation 

of SMS1.  

 



We then analysed CERT localization in response to SL perturbations. As already reported 

by others (Kumagai, Kawano et al., 2007) we found that SL depletion induced CERT 

recruitment to the TGN (Fig 1C, Appendix figures S3A, and Fig EV2). Interestingly, 

when cells were treated with C6-D-Cer or D-Sph, CERT shifted to a cytosolic distribution 

at concentrations inducing the drop in SM production with no measurable changes on 

CERT mRNA and protein levels (Fig 1C, Appendix figures S3A, and Fig EV2). CERT 

redistribution was indeed, sufficient to impair Cer transport to the Golgi as assessed by FL-

BODIPY-C5-Cer transport assay (Appendix figures S3D) and was complete within 60 

min of treatment (Fig 1C, and EV2A, and Movie EV1) indicating that SL flow acutely 

counteracts CERT recruitment, Cer transport to the TGN, and as a consequence SM 

synthesis (Fig 1D). We thus wondered what mechanism could be responsible for this 

phenomenon. 

 

Sustained SL flow induces the consumption of the TGN pool of PtdIns(4)P  

 

First we looked for membrane-associated proteins, which behaved similarly to CERT in 

response to sustained SL flow. While most of the tested proteins remained associated with 

membranes after C6-D-Cer treatment, a specific subset of TGN-associated proteins was 

displaced from membranes. This subset contained the proteins FAPP2, OSBP1, GOLPH3, 

and AP-1 (γ-adaptin) (Fig 2A and Appendix figure S4).  

 

Given that these proteins require the coincident binding of ARF and PtdIns(4)P for their 

recruitment to the TGN (Fig 2B) (De Matteis et al., 2013) the effect of SL flow on ARF1 

and PtdIns(4)P was investigated. As shown in Appendix figure S5, C6-D-Cer treatment 

did not perturb ARF1 localization to the Golgi membranes. Moreover, when the dynamics 

of ARF1-GFP association to the Golgi complex were examined by Fluorescence Recovery 

After Photobleaching (FRAP) experiments in cells treated with C6-D-Cer (10µM for 2 

hours) (Fig 2C; Movies EV2 and EV3), no differences were observed.  
 

We thus used the GFP-tagged Pleckstrin Homology domain of FAPP2 (FAPP-PH-GFP) as 

a TGN PtdIns(4)P probe (D'Angelo et al., 2013, Dowler, Currie et al., 2000, Godi, Di 

Campli et al., 2004). As shown in Fig 2C and in Movie EV4, C6-D-Cer administration 

(10µM) induces the redistribution of FAPP-PH from the Golgi complex to the cytosol. On 

the other hand, a tandem FAPP-PH mutant (diFAPP-PH-R18L-GFP), which localizes to 



the Golgi complex in spite of being unable to bind PtdIns(4)P (Godi et al., 2004) was much 

less sensitive to this treatment (Fig 2C and in Movie EV5), suggesting that SL flow to the 

Golgi complex controls the TGN phosphoinositide composition. 

 

Indeed both C6-D-Cer and D-Sph treatments induced the disappearance of the PtdIns(4)P 

signal from the Golgi region (Fig 3A and Fig EV3) as assessed by the use of anti-

PtdIns(4)P antibody (Hammond, Schiavo et al., 2009) at concentrations and times of 

treatment that induce CERT relocation to the cytosol (compare Fig 1C and 3B).  
 

While C6-D-Cer-induced PtdIns(4)P loss (Fig 3B) explains the inhibition of CERT-

dependent SM synthesis (Fig 1A), it should also hamper cholesterol transport to the TGN 

and globo-series GSL production as these depend on OSBP1 and FAPP2, respectively 

and to their ability to bind PtdIns(4)P at the TGN (D'Angelo et al., 2013, Mesmin et al., 

2013) . Accordingly, we observed a significant increase in cholesterol esters production 

(indicative of redirection of cholesterol flux towards lipid droplets (Ikonen, 2008)) and a 

strong inhibition of globo-series GSLs (Gb3) synthesis in cells treated with D-C6-Cer  

(10µM), which was counterbalanced by a significant accumulation of GlcCer (Appendix 
figure S6).   

 

To exclude that the effects observed under SL challenges were caused by non-specific 

cell poisoning, control experiments were performed. According to these experiments: (i) 
the effect of C6-D-Cer and D-Sph is reversible as cells reacquire normal PtdIns(4)P 

staining after wash-outs (Fig 3A, and Fig EV3). (ii) When the non-metabolizable C6-L-Cer 

enantiomer (Duran, Campelo et al., 2012) was added to the cells no effect was observed 

on PtdIns(4)P staining (Fig 3C). (iii) Since Cer exerts cytostatic and pro-apoptotic effects 

(Hannun & Obeid, 2008) and growth conditions influence PtdIns(4)P levels at the TGN 

(Bajaj Pahuja, Wang et al., 2015, Blagoveshchenskaya, Cheong et al., 2008), the 

possibility that the observed effect is an indirect consequence of Cer on cell proliferative/ 

apoptotic signalling was considered. Thus cells were treated with a Cer analogue D-

erythro-2-N-[6'-(1''pyridinium)hexanoyl]-sphingosine bromide (LCL29) that inhibits cell 

growth and potently induces apoptosis (Appendix figure S7) without being concentrated 

and metabolized at the Golgi complex (Hou, Jin et al., 2011). Under these conditions we 

observed no changes in PtdIns(4)P staining at the Golgi (Fig 3C), suggesting that Cer 



needs to be transported and metabolized at the Golgi complex to influence PtdIns(4)P 

levels.  

 

Recent studies have highlighted the existence of multiple pools of PtdIns(4)P at the TGN, 

PM and endo/ lysosomal compartments (Hammond, Machner et al., 2014). By the use of a 

PtdIns(4)P probe able to detect the different subcellular PtdIns(4)P pools (i.e.; diP4M-

mCherry; (Hammond et al., 2014)) we observed that C6-D-Cer treatment affects uniquely 

the PtdIns(4)P pool at the Golgi (Fig EV4A, and B, and Movie EV6). Moreover the 

PtdIns(4)P pool at the plasma membrane is specifically recognized by the PH domains of 

OSBP family proteins ORP5 and ORP8L (Chung, Torta et al., 2015). As shown in Fig 3D 
C6-D-Cer did not influence the plasma membrane association of GFP tagged versions of 

ORP5 and ORP8L PH domains. Furthermore, C6-D-Cer treatment did not induce 

appreciable changes in the membrane association of probes for other phosphoinositides 

(i.e., GFP-PH-PLCδ and GFP-FYVE, recognizing PtdIns(4,5)P2, and PtdIns(3)P 

respectively (Burd & Emr, 1998, Lemmon, Ferguson et al., 1995, Stauffer, Ahn et al., 1998, 

Varnai & Balla, 1998); Fig 3D) even after prolonged treatments (Fig EV4C). This indicates 

that the TGN pool of PtdIns(4)P is acutely and specifically sensitive to sustained SL flow 

with consequences on local SL and sterol composition. 

 

By recruiting effector proteins with membrane remodelling and deforming properties, the 

PtdIns(4)P is required for the maintenance of Golgi complex structure and function 

(D'Angelo, Vicinanza et al., 2012). Consequently, SL-induced PtdIns(4)P-consumption is 

expected to perturb Golgi morphology. Accordingly we observe that C6-D-Cer treatment 

results in the alteration of the Golgi structure with tubulation of the cis-side (GM130) and 

vesiculation of the TGN (TGN46) as assessed by immunofluorescence (Appendix figure 
S8A). When the ultrastructure of the Golgi complex was analyzed by electron microscopy 

and tomography, C6-D-Cer treatment was found to induce the ‘curling’ of late cisternae 

and development of characteristic multivesicular structures at the trans Golgi pole 

(Appendix figure S8B), where their formation possibly depends on inward budding events 

(Appendix figure S8C, Movies EV7-10). Thus, SL flow controls the morpho-functional 

status of the TGN possibly by regulating the membrane association of key PtdIns(4)P 

effectors at the TGN. 

  

SM synthesis induces the consumption of PtdIns(4)P at the TGN. 



 

According to the data so far reported, Cer requires to be transported to the Golgi complex 

to induce its effect on TGN PtdIns(4)P. At the Golgi, Cer is metabolized to GlcCer by GCS 

(Ichikawa, Ozawa et al., 1998) or to SM by SMS1 (Huitema et al., 2004). To investigate 

the specific role of these reactions in PtdIns(4)P consumption, GCS and SMS1 were 

silenced and cells were treated with D-C6-Cer for 2 hours. As shown in Fig 4A SMS1-KD 

specifically protected TGN PtdIns(4)P from C6-D-Cer treatment. As a consequence of this 

effect, SMS1-KD prevents PtdIns(4)P binding proteins (here we show GOLPH3) from 

being redistributed to the cytosol after C6-D-Cer treatment (Appendix figure S9A). 

Interestingly, untreated SMS1-KD cells showed increased association of CERT, OSBP1, 

and GOLPH3-GFP to the TGN (Appendix figure S9B, C), possibly due to increased local 

PtdIns(4)P levels upon reduced basal SM synthesis. In agreement with these data, C6-D-

Cer treatment did not induce TGN morphological alteration as assessed by 

immunofluorescence or electron microscopy in SMS1-KD cells (Appendix figure S10). 

Along similar lines, silencing of CERT, which mediates Cer transport to the TGN for SM 

synthesis (Hanada et al., 2003), but not of FAPP2, which mediates GlcCer transport to the 

TGN for globo-series GSL synthesis (D'Angelo et al, 2013b), also protected Golgi 

PtdIns(4)P from C6-D-Cer treatment (Appendix figure S11). 

 

The SMS1-mediated conversion of Cer to SM is coupled to the production of diacylglycerol 

(DAG) (Fig 4B) (Hannun & Obeid, 2008). Thus DAG production at the TGN was evaluated 

in relation to PtdIns(4)P loss in response to SL flow. HeLa cells were, thus, transfected 

with a vector encoding the C1α domain of PKD (PKD-C1α), which is recruited to 

membranes by DAG (Baron & Malhotra, 2002). PKD-C1α localization was then followed 

during C6-D-Cer administration along with that of PtdIns(4)P. As shown in Fig 4C, C6-D-

Cer treatment induced a fast recruitment of PKD-C1α to the Golgi region that peaked at 

10-15 min and that preceded the disappearance of PtdIns(4)P. Similar results were 

obtained by using the high affinity DAG and PtdIns(4)P probes YFP-DBD and diFAPP-PH-

mCherry (D'Angelo et al., 2013, Villani, Subathra et al., 2008) in live imaging experiments 

(Movie EV11).  
 

Since DAG at the TGN induces PKD recruitment and activation (Baron & Malhotra, 2002), 

we treated cells with C6-D-Cer for different times and monitored PKD auto-

phosphorylation (indicative of activation) by Western Blotting and immunofluorescence. As 



shown in Fig 4D C6-D-Cer treatment induced PKD activation that peaked at 10-15 min 

treatment, followed by a decrease of PKD phosphorylation at 30 and 60 min. As a 

consequence of this dynamics, also PKD substrates (as recognized by a specific anti-PKD 

phospho-motif; [pMOTIF] (Doppler, Storz et al., 2005) were collectively phosphorylated at 

early time points of C6-D-Cer treatment, to then be dephosphorylated after 30 and 60 min 

of treatment (Fig 4D). The phosphorylation of PKD substrates induced by C6-D-Cer was 

largely dependent on Cer to SM conversion as SMS1-KD inhibited their response to C6-D-

Cer treatment. Similar results were obtained by D-Sph, which also induced a transient and 

SMS1-dependent PKD substrates phosphorylation (Fig 4D). When the subcellular location 

of PKD activation upon C6-D-Cer treatment was visualised by immunofluorescence, a 

strong activation signal in the perinuclear region was noticed (Fig 4E).   

 

Given the association between PKD signalling and PtdIns(4)P consumption induced by 

SM production, we wondered whether PKD itself could be involved in the control of 

PtdIns(4)P levels at the TGN. We thus overexpressed a wt or dominant negative form of 

PKD  (PKD-KinDead, PKD-K618N) (Liljedahl, Maeda et al., 2001) in HeLa cells before C6-

D-Cer treatment. As shown in Fig 5A, PKD-KinDead expression protected PtdIns(4)P from 

C6-D-Cer induced consumption while PKD-wt did not. Along similar lines, the knockdown 

of all three PKD isoforms (Rykx, De Kimpe et al., 2003) induced protection towards C6-D-

Cer treatment (Fig 5B), indicating that PKD is required for the consumption of the TGN 

PtdIns(4)P pool under C6-D-Cer treatment. When the individual contribution of each 

isoform to this phenotype was considered, PKD2 was found to be responsible for C6-D-

Cer induced PtdIns(4)P consumption (Fig 5C). Altogether these data indicate that SM 

synthesis, through PKD activation, controls PtdIns(4)P levels at the TGN.  

 

Interestingly, CERT itself is a PKD substrate and CERT phosphorylation by PKD reduces 

CERT affinity for PtdIns(4)P (Fugmann, Hausser et al., 2007). According to this notion, SL 

induced PKD activation would counteract CERT function by reducing both the levels of 

PtdIns(4)P at the TGN and the ability of CERT to bind it. We evaluated the contribution of 

PKD phosphorylation on CERT (by the use of the CERT phospho-depleted mutant S132A 

(Fugmann et al., 2007)) to its localization at the Golgi under SL challenges and found it to 

be minor if compared with the primary effect on PtdIns(4)P levels as CERT-S132A mutant 

was still sensitive to changes in the SL flow (Appendix figure S12). 

 



SL flow regulates phosphoinositide turnover through PI4KIIIβ and Sac1  

 

PtdIns(4)P is synthesized through the phosphorylation of PtdIns by PtdIns-4-kinases 

(PI4KIIα, PI4KIIIα, PI4KIIβ, and PI4KIIIβ), while the opposite reaction is catalysed by the 

PtdIns(4)P-4-phosphatase Sac1 (De Matteis et al., 2013) (Fig 6A). We, thus, wondered 

which of these enzymes is involved in the SL mediated modulation of PtdIns(4)P pool at 

the TGN. To this aim, we individually silenced each PI4K or Sac1 in HeLa cells and treated 

them with myriocin or C6-D-Cer to inhibit or stimulate the SL metabolism (Fig 6 and 

Appendix figure S13). We then evaluated both myriocin-induced CERT recruitment to the 

Golgi complex and C6-D-Cer-triggered PtdIns(4)P consumption. As shown in Fig 6B, 
PI4KIIIβ-KD specifically abolished CERT recruitment upon myriocin treatment and 

PtdIns(4)P staining at the TGN in both vehicle and C6-D-Cer treated cells, suggesting that 

PI4KIIIβ is the main PI4K involved in the production of the PtdIns(4)P pool regulated by 

SLs. 

 

PI4KIIIβ can be phosphorylated by PKD on Serine 294 and this phosphorylation stimulates 

4-kinase activity (Hausser, Storz et al., 2005). We thus wondered whether PI4KIIIβ is 

phosphorylated by PKD in response to SL flow. As shown in Appendix figure S14A, C6-

D-Cer treatment induced a fast and transient PI4KIIIβ phosphorylation (as recognized by 

the anti-PKD pMOTIF antibody), which is completely prevented by treatment with the PKD 

inhibitor Gö 6976. Moreover, when the PI4KIIIβ-S294A mutant was tested for PKD-

dependent phosphorylation following C6-D-Cer treatment, it was found to be non-

phosphorylated suggesting that Ser294 is the only phosphosite in PI4KIIIβ to be 

phosphorylated by PKD in response to sustained SL flow (Appendix figure S14B).  

Nevertheless, while PI4KIIIβ phosphorylation by PKD on Ser294 leads to enzyme 

activation and increased PtdIns(4)P production (Hausser et al., 2005) (Appendix figure 
S14C), the net effect of PKD activation by SLs is, in fact, a decrease in TGN PtdIns(4)P 

levels. We thus considered the involvement of Sac1 phosphatase. 

 

Sac1 is a transmembrane protein cycling between the ER and the Golgi complex 

(Blagoveshchenskaya et al., 2008). It has been shown that signalling cues influence the 

distribution of Sac1 between these two compartments (Bajaj Pahuja et al., 2015) with 

serum starvation inducing its translocation to the Golgi complex and consequent TGN 

PtdIns(4)P consumption (Blagoveshchenskaya et al., 2008). We asked whether increased 



SL flow would mimic this situation. To test this hypothesis, cells expressing a HA-tagged 

version of Sac1 were treated with C6-D-Cer, and changes in Sac1 subcellular distribution 

associated with PtdIns(4)P consumption were evaluated. As shown in Appendix figure 
S15A, Sac1 overexpression sensitizes cells to C6-D-Cer treatment, since low C6-D-Cer 

concentrations (1µM) caused the disappearance of PtdIns(4)P at the TGN. Nevertheless, 

Sac1 intracellular distribution was not influenced by the treatment with most of the protein 

being ER localized even after C6-D-Cer administration. Moreover, Sac1 overexpression 

was sufficient to counteract CERT recruitment to the Golgi complex induced by myriocin 

treatment (Appendix figure S15B).  Importantly, Sac1-KD rendered TGN PtdIns(4)P 

resistant to C6-D-Cer treatment indicating that C6-D-Cer induced PtdIns(4)P consumption 

results from its Sac1-operated conversion to PtdIns (Fig 6C).  

 

Thus, the metabolic couple PI4KIIIβ/ Sac1 is responsible for the control of PtdIns(4)P 

levels at the TGN in response to SL flow and as a consequence for the maintenance of SL 

homeostasis. A corollary of this is that malfunction of the PI4KIIIβ/ Sac1 system should 

translate in impaired SL metabolism. To test this, we silenced Sac1 and measured cellular 

SL content. As shown in Appendix figure S14C, Sac1 silencing induced a significant 

increase of total Cer, GlcCer and SM levels (and of the overall SL cellular content) while 

sphingoid bases (i.e., Sph and sphinganine [dhSph]) were significantly decreased. This 

evidence is compatible with a role for Sac1 in the regulation of Cer production at the ER 

and confirms the importance of the PtdIns(4)P metabolic machinery in SL homeostasis by 

extending its involvement beyond the circuit described in this study. Nevertheless, how 

does PKD influence Sac1 mediated PtdIns(4)P dephosphorylation? 

 

SL flow induces PKD-dependent OSBP1 phosphorylation and OSBP1-dependent 

PtdIns(4)P consumption. 

 

Sac1 is not known to be a PKD substrate and our attempts to detect PKD dependent Sac1 

phosphorylation gave negative results, thus we considered the possibility that PKD could 

phosphorylate an intermediate factor that would then present PtdIns(4)P to Sac1. Recent 

publications have indicated that the PtdIns(4)P effector, OSBP1 interacts with Sac1 

(Wakana, Kotake et al., 2015), it is phosphorylated by PKD (Nhek, Ngo et al., 2010), and 

is able to transfer PtdIns(4)P from the TGN to the ER channelling this lipid for Sac1-



dependent dephosphorylation (Mesmin et al., 2013). We, thus, decided to investigate the 

possible role of OSBP1 in the SL-induced PtdIns(4)P consumption.  

 

First, we tested whether SL flow induces OSBP1 phosphorylation by PKD. To this aim, 

cells expressing OSBP1-GFP were treated with C6-D-Cer, and PKD phosphorylation was 

revealed by pMOTIF antibody after immunoprecipitation. As shown in Fig 7A, PKD-

mediated OSBP1 phosphorylation started increasing after 15 min of C6-D-Cer 

administration and remained high at 60 min treatment while pre-treatment of cells with the 

PKD inhibitor Gö 6976 completely abolished these dynamics. Noteworthy, OSBP1 is 

phosphorylated by PKD in response to SL flow with a delayed and persistent dynamic 

when compared with PI4KIIIβ (compare with Appendix figure S14A) or with general PKD 

substrates (compare with Fig 4C). While the molecular reason for this difference remains 

unclear, the fact that OSBP1 phopshorylation is maximal at time points when PtdIns(4)P is 

consumed suggested that OSBP1 mediates PtdIns(4)P consumption in response to C6-D-

Cer administration.  

 

We thus tested if OSBP1 has a role in PtdIns(4)P consumption induced by sustained SL 

flow. First we confirmed that OSBP1 overexpression induces the consumption of 

PtdIns(4)P at the TGN (Fig 7B) depending on its capability to contact ER membranes (by 

binding the ER proteins VAPs through its FFAT motif) (Fig EV5A) (Mesmin et al., 2013). 

Importantly when OSBP1-KD cells were subjected to C6-D-Cer treatment, PtdIns(4)P was 

protected from SL flow induced consumption (Fig 7C). Moreover OSBP1-KD, similar to 

what observed in SMS1-KD, induced CERT recruitment to the TGN under basal conditions 

(Fig 7C).  
 

Taken together, these data are compatible with a model whereby the SL-induced PKD-

dependent phosphorylation of OSBP1 stimulates the non-vesicular transport of PtdIns(4)P 

to the ER for its dephosphorylation operated by Sac1. Provided the role of PtdIns(4)P in 

Cer transport to the TGN and conversion to SM, a prediction of this model is that removal 

of OSBP1 should break this negative feedback loop. We tested this prediction and found 

that in OSBP1-KD cells SM synthesis is indeed saturated at higher sphingolipid precursors 

levels when compared to control cells (Fig EV5B).  

 



Along similar lines, the OSBP1/ Sac1 system by consuming PtdIns(4)P (and limiting SM 

production) in response to PKD activation is expected to terminate PKD signalling. 

According to our model indeed, PKD requires PtdIns(4)P dependent SM and DAG 

production for its full activation so after PtdIns(4)P consumption PKD signalling should be 

terminated.  To test this hypothesis first, cells were treated for 15 minutes with the DAG 

analogue Phorbol 12,13-diButyrate (PdBu; 1µM) which activates PKD (Chen, Deng et al., 

2008) before or after 30 min of C6-D-Cer treatment. As shown in Appendix figure S16A, 

PdBu induced PKD activation irrespective of C6-D-Cer treatment, suggesting that PKD is 

still responsive after C6-D-Cer treatment. Second, cells were treated with the PI4K 

inhibitor PIK93 (Toth et al., 2006) before C6-D-Cer administration and PKD activation was 

evaluated by measuring the phosphorylation of its substrates. As shown in Appendix 
figure S16B, PIK93 treatment rendered cells unresponsive to C6-D-Cer in terms of PKD 

activation, supporting the hypothesis that PtdIns(4)P is required for SL induced PKD 

activation and that its consumption terminates PKD signalling. 

 

Discussion: 
 
The post-Golgi membranes enrichment in SLs and sterols is a shared and fundamental 

property of eukaryotic cells and has a key role in shaping both cell response to the 

environment (by influencing cell signalling) and intracellular organization (by determining 

intracellular protein distribution) (Holthuis & Menon, 2014, Lingwood & Simons, 2010, 

Patterson et al., 2008, van Meer et al., 2008). When considering the establishment of the 

post-Golgi membrane territory, two traffic fluxes need to be taken into account. The first 

consists of material traversing the Golgi stack in a cis-to-trans direction, mediates the 

transport of proteins and of the bulk of membrane lipids, and requires vesicles (Nakano & 

Luini, 2010). The second consists of lipids exchanged at ER-TGN MCSs (De Matteis & 

Rega, 2015, Holthuis & Menon, 2014) where lipid-transfer-proteins execute the non-

vesicular transport of selected lipid species (including SLs, and sterols). These two fluxes 

are orthogonal as they are operated by distinct machineries, still they converge at the TGN 

and need to be coordinated in order for TGN-derived carriers to transport the proper 

protein and lipid cargo to post-Golgi destinations. 

 

A fundamental factor regulating both non-vesicular lipid transport and formation of TGN 

derived carriers is PtdIns(4)P (D'Angelo et al., 2008). PtdIns(4)P indeed, is the recruitment 



factor used by the lipid transfer proteins CERT, FAPP2, and OSBP1 to deliver SLs and 

cholesterol to TGN membranes (D'Angelo et al., 2008). PtdIns(4)P  also recruits to TGN 

cytosolic factors able deform membranes (i.e., FAPP1, Arfaptins, AP1/ Clathrin) thus 

promoting membrane budding (Cruz-Garcia, Ortega-Bellido et al., 2013, Godi et al., 2004, 

He, Scott et al., 2011, Lenoir, Coskun et al., 2010, Wang, Wang et al., 2003), and 

mediates the association of nascent carriers with actin cytoskeleton, which provides the 

tensile force required for their formation (i.e., via GOLPH3 recruitment) (Dippold, Ng et al., 

2009). As a combination of these activities, PtdIns(4)P controls both the formation of TGN 

derived membrane carriers and their lipid composition. 

 

In addition, lipid remodelling and carriers formation at the TGN are both coordinated by 

signalling mechanisms that converge on PKDs (Malhotra & Campelo, 2011). PKDs, indeed, 

are recruited to TGN by ARF1 and DAG (Malhotra & Campelo, 2011) to phosphorylate and 

activate PI4KIIIβ (Hausser et al., 2005) allowing its interaction with 14-3-3γ and 

CtBP1/BARS in a complex required for carriers fission (Pagliuso, Valente et al., 2016, 

Valente, Turacchio et al., 2012). At the same time Cer transported to the TGN by CERT, is 

converted to SM in a reaction that generates DAG. TGN-produced DAG has, in turn, the 

potential to activate PKDs thus establishing a positive feedback in SM synthesis and post-

Golgi carriers formation (Malhotra & Campelo, 2011, Thomaseth, Weber et al., 2013, 

Villani et al., 2008). A further PKD substrate is CERT itself, where its phosphorylation 

reduces its affinity for PtdIns(4)P (Fugmann et al., 2007) in a process that promotes CERT 

cycling and results is a further positive feedback loop between CERT transfer activity and 

PKD activity (Weber, Hornjik et al., 2015). 

  

According to this description, the TGN is equipped with a basal lipid remodelling system 

accounting for the enrichment of post-Golgi carriers (and thus post-Golgi compartments) in 

SLs and cholesterol (Deng et al., 2016). But how does this system react to acute 

fluctuations in SL production/ flow? While, indeed, both reduced and excessive SM 

synthesis at the TGN have been reported to impair TGN to plasma membrane trafficking 

(Duran et al., 2012, Subathra, Qureshi et al., 2011), a comprehensive picture on how SL 

metabolic oscillations are matched to TGN and post-Golgi SL composition was missing. 

Here we describe a molecular circuit linking SL flow to the regulation of PtdIns(4)P 

turnover at the TGN.  

 



We indeed show that (i) SL flow stimulates the consumption of the TGN localized 

PtdIns(4)P; (ii) as a consequence, SL flow negatively regulates CERT, FAPP2, and 

OSBP1 recruitment to the Golgi complex (and thus Cer, GlcCer, and cholesterol transport 

to the TGN); (iii) which results in SL flow repressing the production of SM and GSLs at the 

TGN. Specifically, we show that a sudden increase in SM synthesis at first induces the 

PKD-dependent phosphorylation of PI4KIIIβ with a possible transient increase in 

PtdIns(4)P production. Subsequently, PKD phosphorylates OSBP1 most probably at Ser 

240 (Nhek et al., 2010). OSBP1 phosphorylation by PKD is reported to inhibit its 

localization to the TGN possibly modulating its affinity for the ER and TGN binding factors 

VAPs and PtdIns(4)P, respectively. Our data suggest that OSBP1 phosphorylation fosters 

PtdIns(4)P relocation to the ER and Sac1 dependent PtdIns(4)P dephosphorylation (Fig 
EV6A). Given the role of PtdIns(4)P in promoting SM and GSL synthesis at the TGN, 

sustained SM synthesis inhibits SM and GSL production at the TGN (Fig EV6B). 

Importantly this circuit appears to be active also under steady-state conditions as 

reductions in SL flow or SM synthesis translate in reduced basal PKD activity and 

recruitment of PtdIns(4)P effectors to the TGN. 

 

Based on these data, we envisage a model where acute fluctuations in SL provision are 

buffered by a circuit that acts as a homeostatic device to keep SM and GSLs synthetic 

rates constant irrespective of instant changes in the SL flow. In other words, the circuit 

described here would work in a way similar to a voltage stabilizer in a power supply, which 

generates a fixed output voltage of a pre-set magnitude regardless of changes to its input. 

The intuitive outcome of the operation of this circuit would be that of providing robustness 

and stability to the TGN lipid biosynthetic system and, as a consequence, that of 

maintaining constant the SM, GSL, and cholesterol composition of TGN and post-Golgi 

compartments. Interestingly, when considered in the general frame of cellular lipid 

homeostatic systems, the circuit described here presents two unique features: (i) it relies 

on the local sensing of a transient event (i.e., SM synthetic rate at the TGN) and not on the 

detection of global mass levels of a given metabolite (Holthuis & Menon, 2014); (ii) the 

architecture of this circuit wires together the local metabolism of lipid mediators with roles 

in metabolic and trafficking TGN functions (namely Cer, SM, DAG, PtdIns(4)P, GSLs, and 

cholesterol) (De Matteis & Luini, 2008, Holthuis & Menon, 2014). It is thus tempting to 

speculate that by these properties this circuit preforms a harmonizing function on TGN lipid 

remodelling during the dynamic event of post-Golgi carriers formation.  



 

In conclusion, decades of research in membrane biology have shown how membrane 

composition impacts on membrane properties (Lingwood & Simons, 2010, van Meer et al., 

2008). Specifically, SLs and cholesterol at the TGN and post-Golgi membranes exert an 

organizing function on other lipids and membrane proteins influencing their lateral 

distribution, their trafficking, and ultimately their specific functions (Holthuis & Menon, 

2014). Previous studies have described homeostatic circuits devoted to maintain the 

global SL content in eukaryotic cells by regulating the reactions initiating SL production in 

the ER (Breslow, Collins et al., 2010, Cantalupo et al., 2015, Vacaru et al., 2009). In this 

study we provide evidence for the existence (and dissect the architecture) of a 

homeostatic circuit accounting for the localized and acute control of SL metabolism at the 

TGN and thus of post-Golgi membranes composition.  
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Methods 
 
Reagents  
N-C6:0-D-erythro-Sphingosine (D-C6-Ceramide), N-Hexanoyl-L-erythro-sphingosine (L-

C6-Ceramide), D-erythro-2-N-[6'-(1"-pyridinium)-hexanoyl]-sphingosine bromide (LCL29) 

were from Matreya, USA. D-erythro-Sphingosine  (D-Sph) was from Avanti Polar, USA. 

Phorbol 12,13-dibutyrate (PdBU) and GÖ 6976 were from Sigma-Aldrich. PIK93 inhibitor 

was from Echelon Bioscience, USA. Fumonisin B1 (FB1) and myriocin were from Enzo 

Life Sciences, USA. Digitonin was from Calbiochem, USA. Bodipy FL-C5-Ceramide 

complexed to BSA, and Human Transferrin conjugated to Fluor 568 were from Thermo 

Fisher Scientific, USA. All other unmentioned reagents were from Sigma-Aldrich, USA. 

Antibodies used in this study are listed in Appendix Table S1. 

 

Cell lines and culture conditions  
HeLa cells were obtained from the American Tissue Type Collection (ATTC, USA). HeLa 

cells were grown in RPMI-1640 medium (Gibco, USA) supplemented with 10% (v/v) foetal 



calf serum (FCS) (Gibco), containing 4.5 g/L glucose, 2 mM L-glutamine, 100U/ml 

penicillin and streptomycin. Cells were grown under controlled atmosphere (5% CO2 and 

95% air) at 37°C.  

 
Construct and Plasmids 
To generate the human Sac1 (NM_014016), SMS1 (NM_147156), and GCS (NM_003358) 

expressing plasmids total mRNA was purified, from HeLa cells, retrotranscribed and 

cDNAs were amplified by PCR using the following primers: 

Sac1 

Forward: 5 ‘- ATAGGATTCATTGAGAGAGAAGGAAGGAGGTG -3’  

Reverse: 5’- ATAGATATCATTAAAAGTATGCCTGCTAATAGTG -3’ 

SMS1 

Forward: 5’ – GCGCGCGAATTCATGAAGGAAGTGGTTTATTGGTC -3’ 

Reverse: 5’ – TGTGTCATTCACCAGCCGGCT -3’ 

GCS 

Forward: 5’ – GCGCGCGAATTCATGGCGCTGCTGGACCTGG -3’  

Reverse: 5’ – TACATCTAGGATTTCCTCTGC -3’  

PCR reactions were performed as follows: 1 min at 98°C, followed by 30 cycles at 98 °C 

for 20 s, 60 °C for 30 s, 72 °C for 2 min 120 s and a final extension at 72 °C for 7 min. The 

PCR generated fragment for Sac1 was digested with BamHI and EcoRV restriction 

enzymes (New England Biolabs, USA) to be cloned into pcDNA4b-3xHA-expression 

vector (Clontech, USA). The PCR generated fragment for SMS1 and GCS were digested 

with EcoRI and XhoI (New England Biolabs, USA) and cloned in pcDNA4b-3xHA-

expression vector (Clontech, USA). All the obtained plasmids were sequenced before use.    

PKD-wild type, PKD-C1α and PKD-KinDead were provided by Vivek Malhotra (Centre 

Genomic Regulation-CRG, Barcellona); GOLPH3-GFP was provided by Alberto Luini 

(Istitute of Protein Biochemistry, National Research Council, Naples, Italy).  

FAPP2-PH-GFP and diFAPP-PH-R18L-GFP were from Antonella De Matteis laboratory 

(Telethon Institute for Genetics and Medicine), ORP5-PH-GFP, and ORP8L-PH-GFP were 

from Pietro De Camilli laboratory (Yale Medical School); PLCδ-PH-GFP was from Roman 

Polishchuk laboratory (Telethon Institute for Genetics and Medicine). 

PI4KIIIβ-GFP, FYVE-GFP, CERT-GFP, and OSBP-GFP expressing plasmids were 

obtained from Daniela Corda laboratory (Institute of Protein Biochemistry, National 

Research Council, Naples, Italy), PI4KIIIβ-S294A-GFP, Flag-CERT-wt, and Flag-CERT-



S132A were obtained from Angelika Hausser laboratory (University of Stuttgart, Institute of 

Cell Biology and Immunology, Germany). The diP4M-SidM-mCherry construct was 

provided by Tamas Balla (Section on Molecular Signal Transduction within the Program for 

Developmental Neuroscience, Bethesda). mCherry-C1-OSBP-FF>AA mutant war obtained 

from Bruno Mesmin and Bruno Antonny laboratory (Institut de Pharmacologie Moléculaire 

et Cellulaire, Université Nice Sophia Antipolis and CNRS, Valbonne, France). YFP-DAG 

Binding Domain construct was from Chiara Luberto laboratory (Department of Physiology 

and Biophysics, Stony Brook University, Stony Brook, NY). 

 
siRNA treatments and transfections  
The siRNAs for human SMS1 (NM_147156.3), CERT (NM_001130105.1), GCS 

(NM_003358), PKD1 (NM_002742.2), PKD2 (NM_001079880.1), PKD3 (NM_005813.4), 

OSBP1 (NM_002556.2), PI4KIIα (NM_018425), PI4KIIIα (NM_058004), PI4KIIβ 

(NM_018323), PI4KIIIβ (NM_001198773), Sac1 (NM_014016), were obtained from Sigma-

Aldrich (Italy) (Appendix Table S2). HeLa cells were plated at 20% confluence in 24-well 

plates on 24-mm coverslips, or in 12-well plates, and transfected with 120  pmol of siRNAs 

with Oligofectamine (Invitrogen, USA), according to the manufacturer protocol. 72 hours 

after the initial treatment with the siRNAs, the cells were processed for the different 

experiments. The silencing efficiencies were evaluated either by Western Blotting or by 

qPCR using specific primers (listed below).  

All the constructs mentioned in this study were transfected into HeLa cells using TransIT-

LT1 Transfection Reagent (Mirus Bio LLC, USA), according to the manufacturer 

instructions.  

 
RNA extraction and real-time PCR 

Total RNA was isolated from HeLa cells using RNeasy Mini kits (Qiagen, Germany) 

according to the manufacturer instructions. The yield and the integrity of the RNA were 

determined using a spectrophotometer (NanoDrop 2000c; Thermo Scientific, USA), by 

TAE agarose gel electrophoresis, and with an Agilent 2100 Bioanalyser (Agilent 

Technologies, USA). RNA (1 µg) was reverse transcribed using QuantiTect Reverse 

Transcription kits (Qiagen, Germany) according to the manufacturer instructions and 

subjected to real-time qPCR with gene-specific primers in the presence of LightCycler® 

480 SYBR Green I Master Mix (Roche, Switzerland) on a LightCycler® 480 II detection 

system (Roche, Switzerland). Relative abundance of mRNA was calculated by 



normalization to hypoxanthine phosphoribosyltransferase -1 (HPRT1). Real-time PCR 

primers used in this study are listed in Appendix Table S3.  

 
Immunoblotting 
Proteins were detected using the mentioned primary antibodies. The signals were 

visualized using a goat anti-rabbit or goat anti-mouse IgG-HRP secondary antibody (Santa 

Cruz, USA) at a 1:10,000 dilution. 
 
Immunoprecipitation assays  
HeLa cells transfected with the indicated GFP-tagged plasmids were lysed in a buffer 

consisting of: 20 mM MOPS pH 7,0, 2 mM EGTA, 5 mM EDTA, 60 mM β-

glycerophosphate, 30 mM NaF, 1 mM Na3VO4, 1mM DTT, 1% (v/v) Triton-X100, Protease 

inhibitor. Total lysates (1mg) were mixed with 1 µg of anti-GFP IgGs O.N., and incubated 

for 1h with Protein A-Sepharose (Sigma). After centrifugation and washing steps proteins 

associated with the precipitated fraction were eluted by adding Sample Buffer (0.125 M 

Trizma base, 4% SDS, 20% glycerol, 10 % β-mercaptoethanol, pH 6.8), and the eluted 

fraction was analysed by SDS-PAGE and Western blotting. 

 
Sterol measurements 
HPTLC:  

HeLa cells pre-treated overnight (18 h) with vehicle only or myriocin (2,5μM) were pulse-

labelled in serum-free RPMI-1640 with 20 μCi/mL 3H-acetate for 2 hours in the presence of 

vehicle only, myriocin, or myriocin + 10 μM D-C6-Cer. After labelling the cells were further 

incubated in RPMI-1640 + 10% FCS in the presence or absence of myriocin and D-C6-Cer 

for 4 hours. Cells were then harvested and processed for lipid extractions. Lipids were 

spotted on silica-gel high performance-TLC (HPTLC) plates (Merck, Germany), resolved 

with a mixture of petroleum ether:diethyl ether:acetic acid (60:40:1 v/v/v), and unlabelled 

and radiolabeled lipids analyzed as described before (Holtta-Vuori, Vainio et al., 2012). 

Gas Chromatography-Mass Spectrometry: 

Lipid extracts were analyzed by GC-MS as described before (Loizides-Mangold, David et 

al., 2012). Briefly, samples were injected into a VARIAN CP-3800 gas chromatograph 

equipped with a Factor Four Capillary Column VF-5ms 15 m × 0.32 mm i.d. DF = 0.10 and 

analyzed by a Varian 320 MS triple quadrupole with electron energy set to – 70 eV at 

250°C. Samples were applied with the column oven at 45°C, held for 4 min, then raised to 



195°C (20°C/min). Sterols were eluted with a linear gradient from 195 to 230°C (4°C / min), 

followed by rising to 320°C (10°C / min). Finally, the column temperature was raised to 

350°C (6°C / min) to elute sterol esters. Cholesterol and cholesterol esters were identified 

by their retention times (compared with standards) and fragmentation patterns, which were 

compared with the NIST library. 

 

Sphingolipid measurements 
HPTLC:  

HeLa cells pre-treated with myriocin (2,5µM) or FB1 (50µM); were pulse-labelled in RPMI-

1640 10% FCS, with 0,1 μCi/mL (≈ 5nM) 3H-D-erythro-Sphingosine or with [3H]-D-erythro-

C6-Ceramide for 2 hours mixed with increasing amounts of non-radioactive D-Sph and C6-

D-Cer respectively. After 2 hours cells were harvested and processed for lipid extractions. 

Lipids were spotted on silica-gel high performance-TLC (HPTLC) plates (Merck, Germany), 

and resolved with a mixture of chloroform: methanol: water (65:25:4 v/v/v). To visualize the 

unlabelled standards (i.e., Cer, GlcCer, and SM) the TLC plates were placed in a sealed 

tank saturated with iodine vapours, while the radiolabelled lipids were analysed using a 

RITA® TLC Analyser (Raytest, Germany), and quantified using GINA® (Raytest, Germany) 

software analysis. The percentage of total C.P.M. associated with Cer, GlcCer, and SM 

peaks for each of the three lipids is reported. For activity measurements cells labelled as 

described above were harvested, 1/5th of total cell fraction was used for protein content 

determination while the rest was used for lipid extraction and analysis. For each analysed 

sample pmol of SM produced per µg of protein was calculated according to the following 

formula: 

 

(C.P.M.SM/C.P.M. 0.1µCi SL) × SL [pmol] / protein lysate [µg]  
 
Where: 

C.P.M.SM represents the counts per minute associated with the SM peak. 

C.P.M. 0.1µCi SL represents the counts per minute associated with 0.1 µCi of 3H-labelled SL 

precursor. 

SL [pmol] represents the amount of SL precursors fed to cells (pmoles).  

 protein lysate [µg] represents the amount of proteins obtained by lysing the sample (µg). 

HPLC-Mass Spectrometry:  



Sphingolipids were analyzed by liquid chromatography tandem mass spectrometry (LC-

MS/MS) as described earlier (Bielawski, Szulc et al., 2006). Briefly, extracts were analyzed 

with a Quantum Ultra triple quadrupole mass spectrometer connected to an Accela HPLC 

and Accela autosampler using a solvent gradient. Ceramides identity was achieved 

through MRM analysis with soft fragmentation. Quantitative analysis is based on 

calibration curves generated for each lipid. Levels of SLs were normalized to inorganic 

phosphate (Pi) released from total phospholipids. 

 

Immunofluorescence, staining and image analysis 

HeLa were grown on 24-mm coverslips and treated according to the experimental 

procedure were fixed with 4% paraformaldehyde for 15 min and washed once in PBS. 

Blocking Buffer (PBS 1X, 0,5% BSA, 0,05% Saponin, 50mM NH4Cl, 0,02% NaN3) was 

added to the cells for 20 min, followed by 1-hour incubation with the primary antibody. 

Subsequently coverslips were washed with PBS and incubated with secondary antibodies 

(1:400) diluted in blocking solution for 45 min, washed again, and mounted on glass 

microscope slides (Carlo Erba, Italy) with Mowiol.  

The PtdIns(4)P staining was performed as described in (Hammond et al., 2009). HeLa 

cells were grown on 24-mm coverslips. At 80% confluence, the cells were quenched with 

PBS containing 50mM NH4Cl, fixed in 2% paraformaldehyde for 15 min. The cells were 

permeabilized for 5 min with 20µM digitonin in bufferA containing 20 mM Pipes pH 6.68, 

135 mM NaCl, 27 mM KCl. HeLa cells were blocked in buffer A supplemented with 5% 

(v/v) FBS for 45 minutes.  Anti-PtdIns(4)P monoclonal mouse antibody dissolved in buffer 

A with 5% FBS was used for incubation (1:200) for 1 hour. After washing with buffer A, 

anti-mouse IgM secondary antibodies dissolved in buffer A with 5% FBS (1:400) were 

used in incubations for 45 min. Cells were, then, post-fixed for 5 min in 2% 

paraformaldehyde, washed three times with PBS 50mM NH4Cl, washed once with water 

and mounted.  

Immunofluorescence samples were examined under confocal laser microscope (ZEISS-

LSM700 confocal microscope systems; Carl Zeiss, Gottingen, Germany). Optical confocal 

sections were taken at 1 Air Unit. Images were analysed using either ImageJ (Schneider, 

Rasband et al., 2012) or CellProfiler (Carpenter, Jones et al., 2006) software.  

 
Live cell imaging and FRAP assays  



HeLa cells plated on 35-mm glass bottom microwell dishes were from MatTech (USA), 

were transfected with the indicated plasmids (1ug) using TransIT-LT1 Transfection 

Reagent (Mirus Bio LLC, USA) according to manufacturer’s instruction and analysed 24 

hours after transfection. For temperature control during live observation, the microscope 

was equipped with a temperature-controlled chamber, and the cells were imaged on a 

37 °C stage in DMEM-HEPES-buffered pH 7.4 media using a Zeiss LSM 700 confocal 

microscope. Image series were exported as single lsm files, and processed with Imagej for 

analysis, single frame extraction, and conversion into QuickTime movies. 

Fluorescence Recovery After Photobleaching (FRAP) experiments were performed 

bleaching the GFP-ARF1 associated fluorescence in the Golgi area (50 bleaching 

iterations) and then monitoring the fluorescence intensity recovery in the bleached area. 

For both live imaging and FRAP experiments normalised Golgi associated fluorescence 

was calculated according to the formula:  

nGolgif(t)= [Golgif(t)/ Golgif(0) / Cellf(t)/ Cellf(0)]*100   

where:  

nGolgif(t) represents the normalised Golgi associated fluorescence; 

 Golgif(t) and Golgif(0) represent the Golgi associated fluorescence at time (t) and 0 

respectively; 

And Cellf(t) and Cellf(0) represent the whole cell associated fluorescence at time (t) and 0 

respectively. 

 

Transmission Electron Microscopy 
For conventional electron microscopy, cells grown in 35mm plastic dishes were fixed with 

1% Glutaraldehyde (8% Aqueous Solution – Electron Microscopy Sciences) in HEPES 

0.2M pH 7.3 at 4°C for overnight. The fixative was replaced with 1% BSA in PBS and cells 

were carefully detached using a plastic cell scraper, collected into eppendorf tubes and 

centrifuged to obtain the pellet. All samples were then washed three times in HEPES 0.2M 

pH 7.3 and post-fixed 30 minutes in 1% OsO4 at 4°C in the same buffer. They were then 

washed three times in distilled water and post-fixed 25 minutes in 1% OsO4 and 1.5% 

Potassium Ferrocyanide at room temperature in HEPES 0.2M pH 7.3. They were then 

washed three times in distilled water and stained with 0.5% uranyl acetate over night at 

4°C. The pellets were dehydrated in graded steps of ethanol (50%, 70%, 90%, 100%), 2 

times with 100% of acetone and embedded into Epon. Section (60 nm thick) were cut on a 

Leica UC7ultramicrotome and examined with a Fei Tecnai 12 BioTwin Spirit transmission 



electron microscope. 

 

EM tomography 
The sample preparation and tomographic reconstruction was done essentially as 

described previously (Trucco, Polishchuk et al., 2004). In brief, HeLa cells were fixed with 

2% gluteraldehyde for 2 hours at room temperature, and the samples were then 

processed, stained, dehydrated, and epon embedded. The samples were sectioned (200-

nm sections), and gold particles were placed on the surface of the plastic sections and 

examined by an electron microscope (Tecnai-12; FEI). The Golgi profiles with well-

preserved structures were identified and the images were acquired at tilt angles of +65° to 

−65° at 1° intervals, with a magnification of 26,500 using a Veletta CCD digital camera. 

The tomographic reconstruction was done using the Inspect 3D (FEI). 

 

Statistics  
Error bars correspond to either standard deviation (S.D.) or standard error of the mean 

(S.E.M.) according to the different experiments and as indicated in the figure legends. 

Statistical evaluations report on Student’s t test ∗p < 0.05, ∗∗p < 0.01, and ∗∗∗p < 0.001 

(ns, not significant). 

  



Figure legends 
 

Figure 1: Metabolic cell response to SL flow.  

A) HeLa cells treated with myriocin (2.5 µM) or FB1 (50µM) for 24 hours (left and middle 

panel respectively) were fed with increasing concentrations of D-Sph (left panel) or C6-D-

Cer (middle panel) for 2 hours. 3H-D-Sph or 3H-C6-D-Cer (≈5nM) were mixed as tracers 

with their non-radioactive counterparts. The percentage of total radioactivity associated 

with Cer (cyan), GlcCer (green) and SM (red) in the different conditions was quantitated 

after lipid extraction and HPTLC separation. The right panel schematizes the metabolic 

effect of sustained SL flow. B) (Left and middle panels). Cells treated as in (A) were 

subjected to Brefeldin A (BFA) administration (5µg/mL) before (30 min pre-treatment) and 

during SL administration for 2 hours. The amount (pmol) of SM and GlcCer (inset) 

produced under control (red squares) or BFA (green squares) per µg of protein lysate was 

calculated as detailed in Methods and indicated at increasing SL precursor concentrations. 

Δ indicates the difference in SM production at saturating SL precursors amounts. The right 

panel schematizes the effect of BFA on SM production. C) CERT localisation in HeLa cells 

control (CTRL), treated with FB1 (50µM, 24 hours), or with 10µM C6-D-Cer for 2 hours 

after 24 hours treatment with FB1. Bar, 10 µm. Left panels indicate the percentage of 

CERT associated with the Golgi complex at increasing C6-D-Cer concentrations (upper 

graph) and at the indicated times (lower graph). Data are means ± S.E.M. of at least 3 

independent experiments. D) Schematic representation of SL flow induced redistribution of 

CERT to the cytosol and consequent inhibition of SM synthesis. 

 

Figure 2: The localization of TGN PtdIns(4)P effectors is sensitive to SL flow 

A) Cells were treated with either vehicle (EtOH) or D-C6-Cer (10µM) for 2 hours, fixed and 

stained for nuclei (DAPI; blue) and with antibodies to different Golgi associated proteins 

(red). B) Schematic representation of Golgi-proteins localization. Upper panel shows 

proteins that require ARF and lower panel proteins that require PtdIns(4)P for their Golgi 

localization. In solid red are proteins sensitive to sustained SL flow. C) FRAP based 

assessment of ARF1-GFP dynamics of association/ dissociation from Golgi membranes in 

EtOH or D-C6-Cer (10µM) treated cells (see Methods for details; left panels). Mean 

normalized fluorescence intensity ± S.E.M. over time under CTRL (cyan) and D-C6-Cer 

(red) treatment is reported (hl: half life; IF: immobile fraction). D) Live imaging analysis (1 

hour) of FAPP-PH-GFP (FAPP-PH) or diFAPP-PH-R18L-GFP (diPH-R18L) during D-C6-



Cer treatment (10 µM). Mean normalized fluorescence intensity ± S.E.M. over time is 

reported for FAPP-PH-GFP (red) and diFAPP-PH-R18L-GFP (cyan) (hl: half life); Bars, 

10µm. 

 

Figure 3: SL flow controls PtdIns(4)P levels at the Golgi 

A) Cells treated either with vehicle (EtOH), D-C6-Cer (10µM) for 30 min, or treated with D-

C6-Cer (10µM) for 30 min and washed out for 4 hours were stained with a specific anti 

PtdIns(4)P-antibody as detailed in Methods. B) HeLa cells treated with D-C6-Cer (10µM) 

for the indicated times (upper left panel) or with increasing D-C6-Cer concentrations for 30 

min (lower left panel), were processed and stained as in (A). Confocal images were 

acquired, segmented, and analysed by CellProfiler software, as detailed in Methods. 

Average of normalized PtdIns(4)P / GM130 integrated intensities ratio is reported for each 

time or concentration point. Data are means ± 5 x S.E.M of values obtained from at least 

500 cells per experimental point. Right panels schematize the effect of SL flow on 

PtdIns(4)P levels, CERT recruitment to the Golgi, and SM synthesis. C) HeLa cells treated 

either with vehicle (EtOH), D-C6-Cer (10µM), L-C6-Cer (10µM), or LCL-29 (10 µM) for 30 

min were fixed and permeabilized and stained as in (A). D) Cells transfected with GFP- 

tagged ORP5-PH, ORP8L-PH, PLCδ-PH, or FYVE were treated either with vehicle (EtOH), 

D-C6-Cer (10µM) for 2 hours, fixed and stained with DAPI (blue), and an anti-Golgin97 

antibody (red). Bars, 10 µm. 

 

Figure 4: Cer to SM conversion controls PtdIns(4)P levels at the TGN 

A) Cells KD for GCS or SMS1 were treated with D-C6-Cer (10µM) for 2 hours, fixed, 

permeabilized, and stained as in Figure 3A. KD efficiencies are indicated as reduction in 

mRNA levels as assessed by RT qPCR (upper right panel). The percentage of cells 

showing PtdIns(4)P staining at the Golgi in CTRL and D-C6-Cer treated cells is reported 

(lower right panel). B) Schematic representation of the feedback loop regulating SM 

synthesis through PtdIns(4)P (left panel). Biochemical depiction of Cer to SM conversion 

operated by SMS1. C) Cells expressing the GST-tagged DAG sensor PKD-C1α domain 

(C1-alpha) were treated for the indicated times with D-C6-Cer (10 µM), fixed, 

permeabilized and stained with DAPI (blue), anti-GST (red), anti- PtdIns4P (green) 

antibodies (left panel). The Golgi associated C1-alpha fraction at the different time-points 

is reported  (right panel). D) Cells treated with D-C6-Cer (10µM) for the indicated times 

were lysed and lysates were processed for SDS-PAGE and Western Blotting (as detailed 



in methods). Antibodies recognizing total PKD (PKD), phospho-Ser916-PKD (p-PKD), and 

phosphorylated PKD substrates (pMOTIF) were used to monitor PKD activation (left 

panels). PKD activation in both mock (red) and SMS1-KD (cyan) cells was evaluated by 

quantitating phosphorylation of PKD substrates during D-C6-Cer (10µM) or D-Sph (30µM) 

administration. E) Cells transfected with a plasmid encoding GST-PKD2 were treated with 

D-C6-Cer (10µM) for 15 minutes, fixed, permeabilized and stained with DAPI (blue), anti-

GST (red), and anti-p-PKD (green). Bars, 10µm. Data are means ± S.D of at least 3 

independent experiments.   

 

Figure 5: PKD activation is required for SL flow induced PtdIns(4)P consumption 

A) Cells expressing GST-tagged versions of either PKD wild type (PKD-wt) or of a kinase 

dead mutant of PKD (PKD-KinDead; PKD-K618N) (Liljedahl et al., 2001) were treated for 

30 and 60 minutes with D-C6-Cer (10µM). After fixation and permeabilization cells were 

stained with DAPI (blue), anti GST (red), and anti-PtdIns(4)P (green). The left panel shows 

a representative image of PKD-KinDead transfected cells after 60 min of D-C6-Cer (10µM) 

treatment. The percentage of PKD transfected (wt, red; KinDead, cyan) cells showing 

PtdIns(4)P staining at the Golgi at the different times of D-C6-Cer treatment is reported 

(right panel). B) Cells silenced for the three PKD isoforms were treated with D-C6-Cer 

(10µM) for 60 min, fixed, permeabilized, and stained as in Figure 3A. C) Cells silenced for 

each of the three PKD isoforms were treated with D-C6-Cer (10µM) for 60 min, fixed, 

permeabilized, and stained as in Figure 3A. KD efficiency for each PKD isoform is 

reported (mRNA levels as measured by RT qPCR; upper right panel). Schematic 

representation of SL mediated PKD activation and PKD dependent PtdIns(4)P 

consumption at the TGN (lower right panel). Bars, 10 µm. 

 

Figure 6: PI4KIIIβ and Sac1 control the Golgi PtdIns4P pool under SL flow 

A) Schematic representation of PtdIns phosphorylation by PI4Ks and of PtdIns(4)P 

dephosphorylation by Sac1. Cells silenced for the expression of PI4KIIIβ, or SAC1 were 

treated with B) myriocin (2,5 µM; 24 hours) or C) with D-C6-Cer (10µM; 60 min). In (B) 
CERT recruitment to the Golgi region was evaluated by immunofluorescence and 

quantitated as in Figure 1C. In (C) PtdIns(4)P consumption under D-C6-Cer (10µM, 1 

hour) was evaluated as in Figure 4A. D) The KD efficiency for PI4KIIIβ and SAC1 is 

assessed by RT qPCR (right histograms). Bars, 10 µm. Data are means ± S.E.M. of at 

least 3 independent experiments. 



 

Figure 7: OSBP1 mediates SL flow induced PtdIns(4)P consumption 

A) Cells expressing OSBP1-GFP were treated for the indicated times with D-C6-Cer 

(10µM) lysed, and protein lysates were subjected to immunoprecipitation by the use of 

anti-GFP antibody, SDS-PAGE and Western Blotting. PKD dependent phosphorylation of 

OSBP was revealed by pMOTIF antibody. The PKD inhibitor Gö 6976 (10 µM, pre 

treatment 1 hour) was used as a specificity control. B) Cells transiently expressing 

OSBP1-GFP were fixed and permeabilized as in Figure 3 and stained with anti-GM130 

(blue), and anti-PtdIns(4)P (red). Asterisks and dashed line indicate OSBP1-GFP 

transfected cells. C) Cells KD for OSBP1 were treated with D-C6-Cer (10µM) for 1 hour, 

fixed, permeabilized, and stained as in Figure 3A (upper left panels). The percentage of 

cells showing PtdIns(4)P at the Golgi in the different conditions tested is reported (upper 

right panel). Cells KD for OSBP1 were treated with myriocin (2,5 µM for 24 hours) fixed, 

permeabilized and stained for CERT (red) and GM130 (green). CERT recruitment to the 

Golgi region was evaluated by immunofluorescence and quantitated as in Figure 1C 
(middle right panel). OSBP1 KD efficiency was evaluated by Western Blotting (lower right 

panel). Bars, 10 µm. Data are mean ± S.D. of at least three independent experiments. 

  



Expanded View Figure Legends: 
 

Expanded View Figure 1: Intracellular organization of SL metabolism 

A) Schematic representation of SL synthetic reactions happening at the ER (blue shaded 

area) and at the Golgi complex (GC; red shaded area). The metabolic positions where SL 

synthetic inhibitors act (blue) and where cell permeable SL precursor enter SL metabolism 

(red) are indicated. The regions highlighted in yellow indicate ER-TGN MCSs. The orange 

arrow in the background indicates the direction of the biosynthetic flow. B) Schematic 

representation of the sub-Golgi distribution of SL metabolic enzymes and associated 

reactions. C) Experimental scheme for decreased (up) and increased (down) SL flow 

obtained by the use of cell permeable SL precursor or SL synthetic inhibitors.  
Expanded View Figure 2: The association of GFP-CERT to TGN membranes depends 

on SL flow. 

A) GFP-CERT localization in HeLa cells, pre-treated with myriocin (2.5 µM, 24 hours), and 

then treated with D-C6-Cer (10µM) for 2 hours. Images are selected frames from Movie 
EV1. Bar, 10 µm. B) GFP-CERT co-localization with the indicated organelle markers in 

HeLa cells either non treated (CTRL, grey), treated with myriocin (2.5 µM, 24 hours) 

(myriocin, cyan), or pre-treated with myriocin (2.5 µM, 24 hours), and then treated with D-

C6-Cer (10µM) for 2 hours (D-C6-Cer; red). Left panels: representative images, Right 

panel: Co-localization values calculated as Pearson Correlation coefficients (R-values) 

between GFP-CERT and the indicated markers under the different treatments.  Bar, 10 µm. 

 

Expanded View Figure 3: SL flow controls PtdIns(4)P levels at the Golgi 

Cells treated either with vehicle (EtOH), D-Sph (30µM) for 30 min, or treated with D-Sph 

(30µM) for 30 min and washed out for 4 hours were fixed and permeabilized as in (Figure 
3A) and stained with DAPI (blue), an anti-GM130 antibody (red) and anti PtdIns(4)P-

antibody (green). Bar, 10 µm.  

 

Expanded View Figure 4: Sustained SL flow specifically controls PtdIns(4)P at the TGN. 

HeLa cells transfected with plasmids encoding the PtdIns(4)P binding protein diP4M-SidM-

mCherry (diP4M-mCherry, red) and the Golgi enzyme Man1-YFP (MANI, green) were 

treated with D-C6-Cer (10µM) and imaged for the indicated time. The amount of diP4M-

mCherry associated with the Golgi region was quantified (A). B) Selected frames from 

Movie EV6 are reported; dashed line indicates Golgi perimeter. Bar, 10 µm. C) Cells 



transfected with GFP- tagged ORP5-PH, ORP8L-PH, PLCδ-PH, or FYVE were treated 

either with D-C6-Cer (10µM) for the indicated times, fixed and imaged. Bars, 10 µm. 

 

Expanded View Figure 5: OSBP1 mediates PtdIns(4)P relocation to the ER to control SL 

homeostasis at the TGN.  
A) Cells transiently expressing mCherry-OSBP1 wt or the mCherry-OSBP1-FF>AA mutant 

were fixed and permeabilized as in Figure 3 and stained with anti-PtdIns(4)P (green). The 

dashed line indicates mCherry-OSBP1 transfected cells. B) Cells KD for OSBP1 were 

treated with myriocin (2.5 µM) for 24 hours and fed with increasing concentrations of D-

Sph for 2 hours. 3H-D-Sph (≈5nM) was mixed as a tracer with its non-radioactive 

counterpart. The percentage of total radioactivity associated with SM (left panel), GlcCer 

(middle panel) and Cer (right panel) in mock (grey) and OSBP1-KD cells (red) was 

quantitated after lipid extraction and HPTLC separation. The blue dashed line represents 

the values obtained under BFA treatment (from Figure 1B). 

 

Expanded View Figure 6: SL flow to the Golgi controls phosphoinositide turnover at the 

TGN 

A) Schematic representation of SL controlled phosphoinositide turnover at the ER-TGN 

MCSs. Phase I: ARF1 recruits PI4KIIIβ to the TGN to produce PtdIns(4)P. Phase II: 
CERT transfers Cer from the ER to the TGN by contacting VAPs at the ER and PtdIns(4)P 

at the TGN. CERT transferred Cer is converted to SM by SMS1. Phase III: SMS1 

produced DAG recruits (together with ARF) and locally activates PKD. PKD 

phosphorylates itself and PI4KIIIβ to increase PtdIns(4)P production. Phase IV: OSBP1 is 

recruited by PtdIns(4)P. PKD-phosphorylates OSBP1.  Phase V: phospo-OSBP1 

efficiently transfers PtdIns(4)P to the ER for its dephosphorylation operated by Sac1.  B) 
Schematic representation of TGN response to sustained SL flow. At low SL flow (left 

scheme) Cer and GlcCer are efficiently transported to the TGN by the PtdIns(4)P binding 

proteins CERT and FAPP2, respectively to yield SM and complex GSLs. At high SL flow 

(right scheme) PtdIns(4)P is transported to the ER by OSBP1 and dephosphorylated to 

PtdIns. As a consequence CERT and FAPP2 cannot deliver further SL precursors (Cer 

and GlcCer) to the TGN resulting in reduced production of SM and complex GSLs 
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