23 research outputs found

    Opportunities, barriers, and recommendations in down syndrome research

    Get PDF
    Recent advances in medical care have increased life expectancy and improved the quality of life for people with Down syndrome (DS). These advances are the result of both pre-clinical and clinical research but much about DS is still poorly understood. In 2020, the NIH announced their plan to update their DS research plan and requested input from the scientific and advocacy community. The National Down Syndrome Society (NDSS) and the LuMind IDSC Foundation worked together with scientific and medical experts to develop recommendations for the NIH research plan. NDSS and LuMind IDSC assembled over 50 experts across multiple disciplines and organized them in eleven working groups focused on specific issues for people with DS. This review article summarizes the research gaps and recommendations that have the potential to improve the health and quality of life for people with DS within the next decade. This review highlights many of the scientific gaps that exist in DS research. Based on these gaps, a multidisciplinary group of DS experts has made recommendations to advance DS research. This paper may also aid policymakers and the DS community to build a comprehensive national DS research strategy

    Mutation of senataxin alters disease-specific transcriptional networks in patients with ataxia with oculomotor apraxia type 2

    No full text
    Senataxin, encoded by the SETX gene, contributes to multiple aspects of gene expression, including transcription and RNA processing. Mutations in SETX cause the recessive disorder ataxia with oculomotor apraxia type 2 (AOA2) and a dominant juvenile form of amyotrophic lateral sclerosis (ALS4). To assess the functional role of senataxin in disease, we examined differential gene expression in AOA2 patient fibroblasts, identifying a core set of genes showing altered expression by microarray and RNA-sequencing. To determine whether AOA2 and ALS4 mutations differentially affect gene expression, we overexpressed disease-specific SETX mutations in senataxin-haploinsufficient fibroblasts and observed changes in distinct sets of genes. This implicates mutation-specific alterations of senataxin function in disease pathogenesis and provides a novel example of allelic neurogenetic disorders with differing gene expression profiles. Weighted gene co-expression network analysis (WGCNA) demonstrated these senataxin-associated genes to be involved in both mutation-specific and shared functional gene networks. To assess this in vivo, we performed gene expression analysis on peripheral blood from members of 12 different AOA2 families and identified an AOA2-specific transcriptional signature. WGCNA identified two gene modules highly enriched for this transcriptional signature in the peripheral blood of all AOA2 patients studied. These modules were disease-specific and preserved in patient fibroblasts and in the cerebellum of Setx knockout mice demonstrating conservation across species and cell types, including neurons. These results identify novel genes and cellular pathways related to senataxin function in normal and disease states, and implicate alterations in gene expression as underlying the phenotypic differences between AOA2 and ALS4

    PFN2 and GAMT as common molecular determinants of axonal Charcot-Marie-Tooth disease

    No full text
    Background Charcot-Marie-Tooth type 2 (CMT2) neuropathy is characterised by a vast clinical and genetic heterogeneity complicating its diagnosis and therapeutic intervention. Identification of molecular signatures that are common to multiple CMT2 subtypes can aid in developing therapeutic strategies and measuring disease outcomes. Methods A proteomics-based approach was performed on lymphoblasts from CMT2 patients genetically diagnosed with different gene mutations to identify differentially regulated proteins. The candidate proteins were validated through real-time quantitative PCR and western blotting on lymphoblast samples of patients and controls, motor neurons differentiated from patient-derived induced pluripotent stem cells (iPSCs) and sciatic nerves of CMT2 mouse models. Results Proteomic profiling of patient lymphoblasts resulted in the identification of profilin 2 (PFN2) and guanidinoacetate methyltransferase (GAMT) as commonly downregulated proteins in different genotypes compared with healthy controls. This decrease was also observed at the transcriptional level on screening 43 CMT2 patients and 22 controls, respectively. A progressive decrease in PFN2 expression with age was observed in patients, while in healthy controls its expression increased with age. Reduced PFN2 expression was also observed in motor neurons differentiated from CMT2 patient-derived iPSCs and sciatic nerves of CMT2 mice when compared with controls. However, no change in GAMT levels was observed in motor neurons and CMT2 mouse-derived sciatic nerves. Conclusions We unveil PFN2 and GAMT as molecular determinants of CMT2 with possible indications of the role of PFN2 in the pathogenesis and disease progression. This is the first study describing biomarkers that can boost the development of therapeutic strategies targeting a wider spectrum of CMT2 patients

    Chronic inflammatory demyelinating polyneuropathy disease activity status: recommendations for clinical research standards and use in clinical practice

    No full text
    Defining long-term outcomes in chronic inflammatory demyelinating polyneuropathy (CIDP) has been complicated by varying definitions of treatment response and differing scales measuring impairment or disability. An expert panel was convened to devise a CIDP Disease Activity Status (CDAS) and to classify long-term outcome by applying it to 106 patients with a consensus diagnosis of CIDP. Sixty of these cases were graded blindly by three independent reviewers to assess inter-rater reliability. The mean duration of follow-up was 6.4 years (range, 3 months-23 years). Eleven percent of patients were classified as cured (stable examination and off treatment for >= 5 years), 20% were in remission (stable and off treatment for <5 years), 44% had stable active disease but required ongoing therapy for at least 1 year, 7% were improving after recent initiation of therapy, and 18% had unstable active disease (treatment naive or treatment refractory). Excellent inter-rater reliability was observed (kappa scores: 0.93-0.97; p <0.0001). The CDAS is considered a simple and reproducible tool to classify patients with CIDP according to disease activity and treatment status that can be applied easily in practice and potentially to select patients for clinical trial

    European Federation of Neurological Societies/Peripheral Nerve Society Guideline on management of paraproteinemic demyelinating neuropathies. Report of a Joint Task Force of the European Federation of Neurological Societies and the Peripheral Nerve Society - first revision

    No full text
    The aim of this guideline is to update the 2006 EFNS/PNS guideline on management of patients with a demyelinating neuropathy and a paraprotein (paraproteinemic demyelinating neuropathy [PDN]) by review of evidence and expert consensus. In the absence of adequate evidence, the panel agreed on good practice points: (1) patients with PDN should be investigated for a malignant plasma cell dyscrasia; (2) a monoclonal gammopathy of undetermined significance is more likely to be causing the neuropathy if it is immunoglobulin (Ig)M, anti-neural antibodies are present, and the clinical phenotype is chronic distal sensory neuropathy; (3) patients with IgM PDN usually have predominantly distal sensory impairment, prolonged distal motor latencies, and often anti-myelin-associated glycoprotein antibodies; (4) IgM PDN may respond to immunomodulatory therapies. Their potential benefit should be balanced against possible side effects and the usually slow disease progression; (5) IgG and IgA PDN may be indistinguishable from chronic inflammatory demyelinating polyradiculoneuropathy; and (6) Polyneuropathy, Organomegaly, Endocrinopathy, Monoclonal gammopathy, and Skin changes syndrome is a multi-system malignant PDN
    corecore