127 research outputs found

    Atmospheric Micro and Nanoplastics: An Enormous Microscopic Problem

    Get PDF
    Atmospheric plastic pollution is now a global problem. Microplastics (MP) have been detected in urban atmospheres as well as in remote and pristine environments, showing that suspension, deposition and aeolian transport of MP should be included and considered as a major transport pathway in the plastic life cycle. This work reports an up to date review of the experimental estimation of deposition rate of MP in rural and urban environment, also analyzing the correlation with meteorological factors. Due to the limitations in sampling and instrumental methodology, little is known about MP and nanoplastics (NP) with sizes lower than 50 µm. In this review, we describe how NP could be transported for longer distances than MP, making them globally present and potentially more concentrated than MP. We highlight that it is crucial to explore new methodologies to collect and analyze NP. Future research should focus on the development of new technologies, combining the existent knowledge on nanomaterial and atmospheric particle analysis

    Photochemistry of the Cloud Aqueous Phase: A Review

    Get PDF
    This review paper describes briefly the cloud aqueous phase composition and deeply its reactivity in the dark and mainly under solar radiation. The role of the main oxidants (hydrogen peroxide, nitrate radical, and hydroxyl radical) is presented with a focus on the hydroxyl radical, which drives the oxidation capacity during the day. Its sources in the aqueous phase, mainly through photochemical mechanisms with H2O2, iron complexes, or nitrate/nitrite ions, are presented in detail. The formation rate of hydroxyl radical and its steady state concentration evaluated by different authors are listed and compared. Finally, a paragraph is also dedicated to the sinks and the reactivity of the HO• radical with the main compounds found in the cloud aqueous phase. This review presents an assessment of the reactivity in the cloud aqueous phase and shows the significant potential impact that this medium can have on the chemistry of the atmosphere and more generally on the climate

    Photochemistry of the Cloud Aqueous Phase: A Review

    Get PDF
    This review paper describes briefly the cloud aqueous phase composition and deeply its reactivity in the dark and mainly under solar radiation. The role of the main oxidants (hydrogen peroxide, nitrate radical, and hydroxyl radical) is presented with a focus on the hydroxyl radical, which drives the oxidation capacity during the day. Its sources in the aqueous phase, mainly through photochemical mechanisms with H2O2, iron complexes, or nitrate/nitrite ions, are presented in detail. The formation rate of hydroxyl radical and its steady state concentration evaluated by different authors are listed and compared. Finally, a paragraph is also dedicated to the sinks and the reactivity of the HO• radical with the main compounds found in the cloud aqueous phase. This review presents an assessment of the reactivity in the cloud aqueous phase and shows the significant potential impact that this medium can have on the chemistry of the atmosphere and more generally on the climate

    Rapid detection of nanoplastics and small microplastics by Nile-Red staining and flow cytometry

    Get PDF
    Microplastics are of rising health concerns because they have been detected even in remote and pristine environments, from the Artic snow to the Marianne Trench. The occurrence and impact of nanoplastics in ecosystems is almost unknown, in particular due to analytical limitations such as very small sizes that fall below detection limits of current techniques. Here we take advantage of a common interference in analytical flow cytometry to develop a method for the quantification of the number of plastic particles in the 0.6-15 mu m size range. Plastic particles are stained with the lipophilic dye Nile-Red then detected by flow cytometry, a method regularly used in biology for rapid quantification of fluorescent cells. We found that sample analysis lasts 90 s, which is hundreds of times faster than the analysis of filter portions by micro-Raman and other spectroscopic techniques. Our method is highly efficient in detecting polyethylene, with staining efficiency higher than 70% and signal linearity with concentration. Staining efficiency up to 96% was observed for polyvinylchloride and for polystyrene.Peer reviewe

    Classification of Clouds Sampled at the Puy de DĂ´me Station (France) Based on Chemical Measurements and Air Mass History Matrices

    Get PDF
    A statistical analysis of 295 cloud samples collected at the Puy de Dôme station in France (PUY), covering the period 2001–2018, was conducted using principal component analysis (PCA), agglomerative hierarchical clustering (AHC), and partial least squares (PLS) regression. Our model classified the cloud water samples on the basis of their chemical concentrations and of the dynamical history of their air masses estimated with back-trajectory calculations. The statistical analysis split our dataset into two sets, i.e., the first set characterized by westerly air masses and marine characteristics, with high concentrations of sea salts and the second set having air masses originating from the northeastern sector and the “continental” zone, with high concentrations of potentially anthropogenic ions. It appears from our dataset that the influence of cloud microphysics remains minor at PUY as compared with the impact of the air mass history, i.e., physicochemical processes, such as multiphase reactivity

    Production of Graphene Stably Dispersible in Ethanol by Microwave Reaction

    Get PDF
    Graphene is a 2D carbon material with peculiar features such as high electrical conductivity, high thermal conductivity, mechanical stability, and a high ratio between surface and thickness. Applications are continuously growing, and the possibility of dispersing graphene in low-boiling green solvents could reduce its global environmental impact. Pristine graphene can be dispersed in high concentration only in polar aprotic solvents that usually have high boiling points and high toxicity. For this reason, the oxidized form of graphene is always used, as it is easier to disperse and to subsequently reduce to reduced graphene oxide. However, compared to pristine graphene, reduced graphene oxide has more defects and has inferior properties respect to graphene. In this work, the polymerization of (diethyl maleate derivate) on graphene obtained by sonication was performed in a microwave reactor. The obtained material has good stability in ethanol even after a long period of time, therefore, it can be used to deposit graphene by mass production of inks or by casting and easy removal of the solvent. The thermal annealing by heating at 300–400 ◦C in inert atmosphere allows the removal of the polymer to obtain pristine graphene with a low number of defects

    Detection of a novel clone of Acinetobacter baumannii isolated from a dog with otitis externa

    Get PDF
    In this study, the isolation ofAcinetobacter baumanniiin a dog with clinical bilateral otitis externa is described.Moreover, to investigate the zoonotic potential of the isolate, microbiological examinations on the familymembers were performed. AnA. baumanniistrain was isolated from nasal swab in one of the dog owners. Theidentity of bacterial strains, either from dog and owner, was confirmed by phenotypic and molecular typing(wgMLST). Furthermore, to assess the pathogenic potential of the isolates a deep characterization of virulenceand antibiotic resistance genes was done by Whole Genome Sequencing (WGS). Finally, the susceptibility to-wards a wide panel of antimicrobials was investigated. In our knowledge, this is thefirst recorded case ofA.baumanniiisolation from canine auricular swabs in Italy. And interestingly, this study underlines the possiblespread of this microorganism from human to anima

    Separation of isomers using a differential mobility analyser (DMA) : Comparison of experimental vs modelled ion mobility

    Get PDF
    Mass spectrometry is uniquely suited to identify and quantify environmentally relevant molecules and molecular clusters. Mass spectrometry alone is, however, not able to distinguish between isomers. In this study, we demonstrate the use of both an experimental set-up using a differential mobility analyser, and computational ion mobility calculations for identification of isomers. In the experimental set-up, we combined electrospray ionisation with a differential mobility analyser time-of-flight mass spectrometer to separate environmentally relevant constitutional isomers, such as catechol, resorcinol and hydroquinone, and configurational isomers, such as cyclohexanediols and fatty acids (i.e., oleic and elaidic acids). Computational ion mobility predictions were obtained using the Ion Mobility Software (IMoS) program. We find that isomer separation can be achieved with the differential mobility analyser, while for catechol, resorcinol and hydroquinone, the computational predictions can reproduce the experimental order of the ion mobilities between the isomers, confirming the isomer identification. Our experimental set-up allows analysis both in the gas and liquid phase. The differential mobility analyser can, moreover, be combined with any mass spectrometry set-up, making it a versatile tool for the separation of isomers.Peer reviewe

    Characterization of Bacillus cereus Group Isolates From Human Bacteremia by Whole-Genome Sequencing

    Get PDF
    Members of the Bacillus cereus group are spore-forming organisms commonly associated with food poisoning and intestinal infections. Moreover, some strains of the group (i.e., B. cereus sensu stricto and Bacillus thuringiensis) can cause bacteremia in humans, mainly in immunocompromised individuals. Here we performed the genetic characterization of 17 human clinical strains belonging to B. cereus group isolated from blood culture. The whole-genome sequencing (WGS) revealed that the isolates were closely related to B. cereus sensu stricto and B. thuringiensis–type strain. Multilocus sequence typing analysis performed on the draft genome revealed the genetic diversity of our isolates, which were assigned to different sequence types. Based on panC nucleotide sequence, the isolates were grouped in the phylogenetic groups III and IV. The NHE, cer, and inhA gene cluster, entA, entFM, plcA, and plcB, were the most commonly detected virulence genes. Although we did not assess the ability to generate biofilm by phenotypic tests, we verified the prevalence of biofilm associated genes using an in silico approach. A high prevalence of pur gene cluster, xerC, clpY, codY, tasA, sipW, sinI, and sigB genes, was found. Genes related to the resistance to penicillin, trimethoprim, and ceftriaxone were identified in most of the isolates. Intriguingly, the majority of these virulence and AMR genes appeared to be evenly distributed among B. cereus s.s. isolates, as well as closely related to B. thuringiensis isolates. We showed the WGS represents a good approach to rapidly characterize B. cereus group strains, being able to give useful information about genetic epidemiology, the presence of virulence and antimicrobial genes, and finally about the potential hazard related to this underestimated risk
    • …
    corecore