1,525 research outputs found

    Meiobenthos and nematode assemblages from different deep-sea habitats of the Strait of Sicily (Central Mediterranean Sea)

    Get PDF
    Much attention is currently devoted at upgrading our knowledge on biodiversity and functioning of deep water ecosystems. Information is constantly enriched by researchers, even from basins as the long-studied Mediterranean Sea. In such a perspective, we studied meiobenthic and nematode communities inhabiting muddy sediments from three different habitats at bathyal depths in the Strait of Sicily: a cold-water coral site (CS) in the Maltese Coral Province, a muddy bottom in the same area (MS), and a hydrocarbon imprinted pockmark site (PS) in the Gela Basin. The average meiofauna density at CS (1343 ind/10 cm2) and MS (1804 ind/10 cm2) is much higher than that reported in literature for similar habitats; it is also markedly more elevated than that recorded at PS (224 ind/10 cm2). Although nematodes of the three sites show different abundances, they share similar assemblage structure. Nematodes (avg. 86%) and copepods (avg. 9.3%) were the most abundant meiofaunal taxa at all sites followed by annelids, kinorhynchs and turbellarians. Nematodes were composed by 21 families and 46 genera, with Terschellingia, as most abundant genus (12.4%), followed by Microlaimus (11%), Daptonema (11%), Thalassomonhystera (10.8%), Acantholaimus (9.5%) and Sabatieria (8.7%). The genera Thalassomonhystera, Terschellingia, Microlaimus, Daptonema, Chromadorita, Sabatieria, and Anticoma display a dominance in at least one station. The taxonomic structure of meiofaunal communities of the studied sites is rather similar but differences in relative abundance are evident

    The Ages and Abundances of the M87 Globular Clusters

    Get PDF
    A subset of 150 globular clusters in M87 has been selected on the basis of S/N ratio for abundance and age determinations from the sample of Paper I. Indices measuring the strength of the strongest spectral features were determined for the M87 GCs and from new data for twelve galactic GCs. Combining the new and existing data for the galactic GCs and comparing the (U−R)(U-R) colors and the line indices gives qualitative indications for the ages and abundances of the GCs. Quantitative results are obtained by applying the Worthey (1994) models for the integrated light of stellar systems of a single age, calibrated by observations of galactic GCs, to deduce abundances and ages for the objects in our sample. We find that the M87 GCs span a wide range in metallicity, from very metal poor to somewhat above solar metallicity. The mean [Fe/H] of -0.95 dex is higher than that of the galactic GC system, and there is a metal rich tail that reaches to higher [Fe/H] than one finds among the galactic GCs. The mean metallicity of the M87 GC system is about a factor of four lower than that of the M87 stellar halo at a fixed projected radius RR. The metallicity inferred from the X-ray studies is similar to that of the M87 stellar halo, not to that of GCs. We infer the relative abundances of Na, Mg, and Fe in the M87 GCs from the strength of their spectral features. The behavior of these elements between the metal rich and metal poor M87 GCs is similar to that shown by the galactic GCs and by halo stars in the Galaxy. The pattern of chemical evolution in these disparate old stellar systems is indistinguishable. We obtain a median age for the M87 GC system of 13 Gyr, similar to that of the galactic GCs, with a small dispersion about this value.Comment: 56 pages with included postscript figures; added derived M87 GC metallicities to Table 2, a statistical analysis of possible bimodality, an appendix on the metallicity calibration of U-R and the Washington system, and other smaller changes. Accepted for publication in ApJ. (See paper for complete version of the Abstract.

    Optical and electrical behavior of synthetic melanin thin films spray-coated

    Get PDF
    AbstractWe investigated the optical and the electrical conductivity properties of synthetic melanin thin films spray-coated on glass. These films showed a broadband monotonic increase of the absorption coefficient, decreasing the wavelength in the Visible-NIR range. Conductivity as a function of the temperature evidenced a semiconductor like character and a hysteretic behaviour after thermal annealing up to 475 K. Thermal activation energies extrapolated by resistance curves have been explained by using the framework of a band-model as for an amorphous semiconductor

    A Bio-Imaging Signature as a Predictor of Clinical Outcomes in Locally Advanced Pancreatic Cancer

    Get PDF
    Purpose: To evaluate the predictive value of 18F-FDG PET/CT semiquantitative parameters of the primary tumour and CA 19-9 levels assessed before treatment in patients with locally advanced pancreatic cancer (LAPC). Methods: Among one-hundred twenty patients with LAPC treated at our institution with initial chemotherapy followed by curative chemoradiotherapy (CRT) from July 2013 to January 2019, a secondary analysis with baseline 18F-FDG PET/CT was conducted in fifty-eight patients. Pre-treatment CA 19-9 level and the maximum standardized uptake value (SUVmax), metabolic tumour volume (MTV) and total lesion glycolysis (TLG) of primary tumour were measured. The receiving operating characteristics (ROC) analysis was performed to define the cut-off point of SUVmax, MTV, TLG and CA 19-9 values to use in prediction of early progression (EP), local progression (LP) and overall survival (OS). Areas under the curve (AUCs) were assessed for all variables. Post-test probability was calculated to evaluate the advantage for parameters combination. Results: For EP, CA 19-9 level > 698 U/mL resulted the best marker to identify patient at higher risk with OR of 5.96 (95% CI, 1.66–19.47; p = 0.005) and a Positive Predictive Value (PPV) of 61%. For LP, the most significant parameter was TLG (OR 9.75, 95% CI, 1.64–57.87, p = 0.012), with PPV of 83%. For OS, the most significant parameter was MTV (OR 3.12, 95% CI, 0.9–10.83, p = 0.07) with PPV of 88%. Adding consecutively each of the other parameters, PPV to identify patients at risk resulted further increased (>90%). Conclusions: Pre-treatment CA 19-9 level, as well as MTV and TLG values of primary tumour at baseline 18F-FDG PET/CT and their combination, may represent significant predictors of EP, LP and OS in LAPC patients

    ISOCAM observations of Galactic Globular Clusters: mass loss along the Red Giant Branch

    Get PDF
    Deep images in the 10 micron spectral region have been obtained for five massive Galactic globular clusters, NGC 104 (=47 Tuc), NGC 362, NGC 5139 (omega Cen), NGC 6388, NGC 7078 (=M15) and NGC 6715 (=M54) in the Sagittarius Dwarf Spheroidal using ISOCAM in 1997. A significant sample of bright giants have an ISOCAM counterpart but only < 20% of these have a strong mid-IR excess indicative of dusty circumstellar envelopes. From a combined physical and statistical analysis we derive mass loss rates and frequency. We find that i) significant mass loss occurs only at the very end of the Red Giant Branch evolutionary stage and is episodic, ii) the modulation timescales must be greater than a few decades and less than a million years, and iii) mass loss occurrence does not show a crucial dependence on the cluster metallicity.Comment: 26 pages, 9 figure

    Star Clusters

    Full text link
    This review concentrates almost entirely on globular star clusters. It emphasises the increasing realisation that few of the traditional problems of star cluster astronomy can be studied in isolation: the influence of the Galaxy affects dynamical evolution deep in the core, and the spectrum of stellar masses; in turn the evolution of the core determines the highest stellar densities, and the rate of encounters. In this way external tidal effects indirectly influence the formation and evolution of blue stragglers, binary pulsars, X-ray sources, etc. More controversially, the stellar density appears to influence the relative distribution of normal stars. In the opposite sense, the evolution of individual stars governs much of the early dynamics of a globular cluster, and the existence of large numbers of primordial binary stars has changed important details of our picture of the dynamical evolution. New computational tools which will become available in the next few years will help dynamical theorists to address these questions.Comment: 10 pages, 3 figures, Te
    • 

    corecore