104 research outputs found

    Fluorescent Nanocrystals Reveal Regulated Portals of Entry into and Between the Cells of Hydra

    Get PDF
    Initially viewed as innovative carriers for biomedical applications, with unique photophysical properties and great versatility to be decorated at their surface with suitable molecules, nanoparticles can also play active roles in mediating biological effects, suggesting the need to deeply investigate the mechanisms underlying cell-nanoparticle interaction and to identify the molecular players. Here we show that the cell uptake of fluorescent CdSe/CdS quantum rods (QRs) by Hydra vulgaris, a simple model organism at the base of metazoan evolution, can be tuned by modifying nanoparticle surface charge. At acidic pH, amino-PEG coated QRs, showing positive surface charge, are actively internalized by tentacle and body ectodermal cells, while negatively charged nanoparticles are not uptaken. In order to identify the molecular factors underlying QR uptake at acidic pH, we provide functional evidence of annexins involvement and explain the QR uptake as the combined result of QR positive charge and annexin membrane insertion. Moreover, tracking QR labelled cells during development and regeneration allowed us to uncover novel intercellular trafficking and cell dynamics underlying the remarkable plasticity of this ancient organism

    Synthesis and biological assay of GSH functionalized fluorescent quantum dots for staining Hydra vulgaris

    Get PDF
    Quantum dots (QDs) have been used extensively as fluorescent markers in several studies on living cells. Here, we report the synthesis of conjugates based on glutathione (GSH) and QDs (GSH-QDs) and we prove how these functionalized fluorescent probes can be used for staining a freshwater invertebrate called Hydra vulgaris. GSH is known to promote Hydra feeding response by inducing mouth opening. We demonstrate that GSH-QDs as well are able to elicit biological activity in such an animal, which results in the fluorescent staining of Hydra. GSH-QDs, once they reach the gastric region, are internalized by endodermal cells. The efficiency of GSH-QD internalization increases significantly when nanoparticles are coadministrated with free GSH. We also compared the behavior of bare QDs to that of GSH-QDs both in the presence and in the absence of free GSH. The conclusions from these series of experiments point to the presence of GSH binding proteins in the endodermal cell layer and uncover a novel role played by glutathione in this organism

    Bioconjugation of Rod-Shaped Fluorescent Nanocrystals for Efficient Targeted Cell Labeling

    Get PDF
    In the present work, we report a three-step approach for the functionalization of CdSe/CdS core/shell and CdSe/CdS/ZnS double-shell quantum rods (QRs) with either biotin or folic acid. We carried out an in vitro study on cultured cells and fixed tissue sections in which the biofunctionalized QRs were compared with the more traditional CdSe/ZnS quantum dots (QDs), which were also functionalized with either biotin or folic acid. The QR and the QD samples exhibited the same specificity toward the targeting cells. In addition, due to the enhanced photoluminescence of the QRs with respect to QDs, a lower amount of rods was required to image cells. In immuno-localization experiments on rat brain tissue sections, biotin-functionalized QRs have shown the typical protein localization patterns expected both for neuronal enolase NSE and actin, confirming the specificity of the interaction of QRs with avidin, and the feasibility of these materials as fluorescent probes in tissue staining. In this specific targeting study, we could assess via the MTT test, a cell viability assay, the lower toxicity of the CdSe/CdS/ZnS QRs with respect to CdSe/CdS QRs

    A New In Vivo Model System to Assess the Toxicity of Semiconductor Nanocrystals

    Get PDF
    In the emerging area of nanotechnology, a key issue is related to the potential impacts of the novel nanomaterials on the environment and human health, so that this technology can be used with minimal risk. Specifically designed to combine on a single structure multipurpose tags and properties, smart nanomaterials need a comprehensive characterization of both chemicophysical properties and adequate toxicological evaluation, which is a challenging endeavour; the in vitro toxicity assays that are often employed for nanotoxicity assessments do not accurately predict in vivo response. To overcome these limitations and to evaluate toxicity characteristics of cadmium telluride quantum dots in relation to surface coatings, we have employed the freshwater polyp Hydra vulgaris as a model system. We assessed in vivo acute and sublethal toxicity by scoring for alteration of morphological traits, population growth rates, and influence on the regenerative capabilities providing new investigation clues for nanotoxicology purposes

    METHOD OFOBTAINING MICROGRAPHS OF TRANSPARENT OR SEMI-TRANSPARENT SPECIMENS USING ANISOTROPIC CONTRAST

    Get PDF
    Anisotropic contrast methodology in combination with use of sample investigating polarized electromagnetic radiation to provide Jones or Mueller Matrix imaging data corresponding to areas on samples

    Wege zur aktiven Textarbeit: Lese- und Schreibkompetenz in den Geistes- und Sozialwissenschaften

    Get PDF
    Das Arbeiten mit und an Texten gehört zum Alltag von Geistes- und Sozialwissenschaftler_innen und damit auch zum Alltag von Studierenden geistes- und sozialwissenschaftlicher Fächer. Wie können Studierende Kompetenzen für den rezeptiven sowie produktiven Umgang mit Texten erwerben? Diese Frage widmete sich die interaktive Postersession "Textarbeit in Literatur- und Kulturwissenschaften" und bot Lehrenden eine Plattform, konkrete Lehr-Lern-Projekte zur Arbeit mit Texten vorzustellen und zu diskutieren

    Multiple functionalization of fluorescent nanoparticles for specific biolabeling and drug delivery of dopamine

    Get PDF
    The development of fluorescent biolabels for specific targeting and controlled drug release is of paramount importance in biological applications due to their potential in the generation of novel tools for simultaneous diagnosis and treatment of diseases. Dopamine is a neurotransmitter involved in several neurological diseases, such as Parkinson's disease and attention deficit hyperactivity disorder (ADHD), and the controlled delivery of its agonists already proved to have beneficial effects both in vitro and in vivo. Here, we report the synthesis and multiple functionalization of highly fluorescent CdSe/CdS quantum rods for specific biolabeling and controlled drug release. After being transferred into aqueous media, the nanocrystals were made highly biocompatible through PEG conjugation and covered by a carbohydrate shell, which allowed specific GLUT-1 recognition. Controlled attachment of dopamine through an ester bond also allowed hydrolysis by esterases, yielding a smart nanotool for specific biolabeling and controlled drug release

    Prepuberal stimulation of 5-HT7-R by LP-211 in a rat model of hyper-activity and attention-deficit: permanent effects on attention, brain amino acids and synaptic markers in the fronto-striatal interface

    Get PDF
    The cross-talk at the prefronto-striatal interface involves excitatory amino acids, different receptors, transducers and modulators. We investigated long-term effects of a prepuberal, subchronic 5-HT7-R agonist (LP-211) on adult behaviour, amino acids and synaptic markers in a model for Attention-Deficit/Hyperactivity Disorder (ADHD). Naples High Excitability rats (NHE) and their Random Bred controls (NRB) were daily treated with LP-211 in the 5th and 6th postnatal week. One month after treatment, these rats were tested for indices of activity, non selective (NSA), selective spatial attention (SSA) and emotionality. The quantity of L-Glutamate (L-Glu), L-Aspartate (L-Asp) and L-Leucine (L-Leu), dopamine transporter (DAT), NMDAR1 subunit and CAMKIIα, were assessed in prefrontal cortex (PFC), dorsal (DS) and ventral striatum (VS), for their role in synaptic transmission, neural plasticity and information processing. Prepuberal LP-211 (at lower dose) reduced horizontal activity and (at higher dose) increased SSA, only for NHE but not in NRB rats. Prepuberal LP-211 increased, in NHE rats, L-Glu in the PFC and L-Asp in the VS (at 0.250 mg/kg dose), whereas (at 0.125 mg/kg dose) it decreased L-Glu and L-Asp in the DS. The L-Glu was decreased, at 0.125 mg/kg, only in the VS of NRB rats. The DAT levels were decreased with the 0.125 mg/kg dose (in the PFC), and increased with the 0.250 mg/kg dose (in the VS), significantly for NHE rats. The basal NMDAR1 level was higher in the PFC of NHE than NRB rats; LP-211 treatment (at 0.125 mg/kg dose) decreased NMDAR1 in the VS of NRB rats. This study represents a starting point about the impact of developmental 5-HT7-R activation on neuro-physiology of attentive processes, executive functions and their neural substrates

    Chapter 9: Silica-based Nanovectors: From Mother Nature to Biomedical Applications (Book chapter)

    Get PDF
    Diatomite is a natural porous silica material of sedimentary origin, formed by remains of diatom skeletons called “frustules.” The abundance in many areas of the world and the peculiar physico-chemical properties made diatomite an intriguing material for several applications ranging from food production to pharmaceutics. However, diatomite is a material still rarely used in biomedical applications. In this chapter, the properties of diatom frustules reduced to nanoparticles, with an average diameter less than 350 nm, as potential drug vectors are described. Their biocompatibility, cellular uptake, and capability to transport molecules inside cancer cells are discussed. Preliminary studies of in vivo toxicity are also presented.Peer reviewe
    • …
    corecore