26 research outputs found

    Investigating the long-chain polyunsaturated fatty acid biosynthesis of the African catfish Clarias gariepinus (Burchell, 1822)

    Get PDF
    Investigating the biosynthesis of long-chain (C20–24) polyunsaturated fatty acids (LC-PUFA), physiologically important compounds including arachidonic acid (ARA), eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA), in fish is crucial to identify dietary requirements for essential fatty acids (EFA). Moreover, knowledge of the C20–24 LC-PUFA biosynthetic capability of farmed fish species enables us to understand their ability to utilise commonly used raw materials such as vegetable oils, which naturally lack LC-PUFA but include C18 PUFA that are metabolic precursors of LC-PUFA. Studies have shown that the potential of a species for LC-PUFA biosynthesis is associated with the complement and function of fatty acyl desaturase (fads) and elongase of very long chain fatty acid (elovl) genes existing in that species. The present study therefore aimed to investigate these genes in the African catfish (Clarias gariepinus), the most commercially important farmed fish in sub-Saharan Africa. A fads2, a fads6 and four elovl (elovl2, elovl4a, elovl4b, elovl8) cDNAs were cloned and functionally characterised by heterologous expression in yeast. The Fads2 was a bifunctional desaturase enzyme with ∆6∆5 and ∆8 activities, and thus catalysing all the desaturation reactions required for ARA and EPA biosynthesis from C18 precursor fatty acids. Moreover, the C. gariepinus Fads2 enzymes also desaturated 24:5n-3 to 24:6n-3, a ∆6 desaturation required for the biosynthesis of DHA through the so-called “Sprecher pathway”. Functional characterisation of Fads6 by heterologous expression in yeast did not reveal its function. With regards to elongases, the C. gariepinus Elovl2 demonstrated the ability to elongate C20 and C22 PUFA and thus complements the Elovl5 with elongase capability towards C18 and C20 PUFA. The Elovl8 was capable of only limited elongation of C18 and C20 PUFA. Elovl4a and Elovl4b, enable the biosynthesis of very long-chain (>C24) fatty acids, compounds with major roles in vision and fertility of vertebrates. The present study confirmed that C. gariepinus possess all the enzymatic capabilities required for the biosynthesis of ARA, EPA and DHA and, therefore, its physiological EFA requirements could be satisfied with dietary provision of C18 PUFA

    Biosynthesis of long-chain polyunsaturated fatty acids in the African catfish Clarias gariepinus: Molecular cloning and functional characterisation of fatty acyl desaturase (fads2) and elongase (elovl2) cDNAs7

    Get PDF
    Fish differ in their capacity for endogenous synthesis of long-chain (C20-24) polyunsaturated fatty acids (LC-PUFA) from dietary C18 precursors (α-linolenic and linoleic acids). Understanding this capacity is of benefit to fish feed formulation. This, together with the importance of fish as the primary source of omega-3 LC-PUFA in the human diet has necessitated the rigorous study of the biochemical and molecular mechanisms involved in the LC-PUFA biosynthesis pathway in fish species. Studies have shown the potential of a species for LC-PUFA biosynthesis is associated with the complement and function of fatty acyl desaturase (fads) and elongase of very long chain fatty acid (elovl) gene it possesses. The present study therefore aimed to investigate these genes in the African catfish (Clarias gariepinus), the most commercially important farmed fish species in Sub-Saharan Africa. A fads2 and an elovl2 cDNA were cloned containing open reading frames (ORF) of 1338 base pair (bp) and 864 bp specifying proteins of 445 and 287 amino acids, respectively. Functional characterisation by heterologous expression in yeast showed that the Fads2 was bifunctional with ∆5∆6 activities catalysing the desaturation of both 18:3n-3 and 20:4n-3 and their corresponding n-6 fatty acids, 18:2n-6 and 20:3n-6. The Elovl2 showed activity towards C18, C20 and C22 PUFA with highest activity towards C20 and C22 PUFA. Tissue expression analysis showed a typical freshwater species expression pattern; higher expression in the liver compared to brain and all other tissues with the exception of elovl5 which showed highest expression in the intestine. Consistent with feeding studies of typical freshwater fish species that show their essential fatty acid requirement can be satisfied by dietary C18 PUFA, the present study confirms that the LC-PUFA biosynthesis pathway is active in the African catfish C. gariepinus

    Essential fatty acid metabolism and requirements of the cleaner fish, ballan wrasse Labrus bergylta: Defining pathways of long-chain polyunsaturated fatty acid biosynthesis

    Get PDF
    Ballan wrasse (Labrus bergylta) is an effective counter-measure against sea lice used by Atlantic salmon farmers, proving to be more effective and economical than drugs or chemical treatments alone. There are currently efforts underway to establish a robust culture system for this species, however, essential fatty acid dietary requirements are not known for ballan wrasse. In the present study, we isolated and functionally characterised ballan wrasse fatty acid desaturase (Fads) and elongation of very long-chain fatty acids (Elovl) protein to elucidate their long-chain polyunsaturated fatty acid (LC-PUFA) biosynthetic capability. Sequence and phylogenetic analysis demonstrated that the cloned genes were fads2 and elovl5 orthologues of other teleost species. Functional characterisations of fads2 and elovl5 were performed using the yeast (Saccharomyces cerevisiae) heterologous expression system. The Fads2 showed Δ6 desaturase activity towards 18:3n–3, 18:2n–6 and 24:5n–3, and Δ8 desaturase activity towards 20:3n–6 and 20:2n–6. The Elovl5 showed elongase activities towards various C18 and C20 fatty acids. Therefore, 20:4n–3 and 20:3n–6 can be synthesised from 18:3n–3 and 18:2n–6, respectively in ballan wrasse via two possible pathways, the Δ6 (Δ6 desaturation – elongation) and Δ8 (elongation – Δ8 desaturation) pathways. However, due to the absence of Δ5 desaturase activity and no other Fads2 in their genome, 20:5n–3 (eicosapentaenoic acid, EPA) and 20:4n–6 (arachidonic acid, ARA) cannot be synthesised from C18 PUFA precursors and they could consequently be regarded as dietary essential fatty acids for ballan wrasse. Since no Δ4 desaturase activity was detected in ballan wrasse Fads2, 22:6n–3 (docosahexaenoic acid, DHA) can only be synthesised from EPA via the Sprecher pathway comprising two sequential elongation steps to produce 24:5n–3 followed by Δ6 desaturation and chain shortening. Although ballan wrasse Elovl5 had no elongase activity towards C22, other elongases such as Elovl4 exist in the ballan wrasse genome that may be able to produce 24:5n–3. Therefore, as ballan wrasse Fads2 can desaturate 24:5n–3 to produce 24:6n-­3, it can be assumed that ballan wrasse can synthesise DHA from EPA

    Biosynthesis of Polyunsaturated Fatty Acids in Sea Urchins: Molecular and Functional Characterisation of Three Fatty Acyl Desaturases from Paracentrotus lividus (Lamark 1816)

    Get PDF
    Sea urchins are broadly recognised as a delicacy and their quality as food for humans is highly influenced by their diet. Lipids in general and the long-chain polyunsaturated fatty acids (LC-PUFA) in particular, are essential nutrients that determine not only the nutritional value of sea urchins but also guarantee normal growth and reproduction in captivity. The contribution of endogenous production (biosynthesis) of LC-PUFA in sea urchins remained unknown. Using Paracentrotus lividus as our model species, we aimed to characterise both molecularly and functionally the repertoire of fatty acyl desaturases (Fads), key enzymes in the biosynthesis of LC-PUFA, in sea urchins. Three Fads, namely FadsA, FadsC1 and FadsC2, were characterised. The phylogenetic analyses suggested that the repertoire of Fads within the Echinodermata phylum varies among classes. On one hand, orthologues of the P. lividus FadsA were found in other echinoderm classes including starfishes, brittle stars and sea cucumbers, thus suggesting that this desaturase is virtually present in all echi- noderms. Contrarily, the FadsC appears to be sea urchin-specific desaturase. Finally, a fur- ther desaturase termed as FadsB exists in starfishes, brittle stars and sea cucumbers, but appears to be missing in sea urchins. The functional characterisation of the P. lividus Fads confirmed that the FadsA was a Δ5 desaturase with activity towards saturated and polyun- saturated fatty acids (FA). Moreover, our experiments confirmed that FadsA plays a role in the biosynthesis of non-methylene interrupted FA, a group of compounds typically found in marine invertebrates. On the other hand, both FadsC desaturases from P. lividus showed Δ8 activity. The present results demonstrate that P. lividus possesses desaturases that account for all the desaturation reactions required to biosynthesis the physiological essential eicosapentaenoic and arachidonic acids through the so-called “Δ8 pathway”

    Two alternative pathways for docosahexaenoic acid (DHA, 22:6n-3) biosynthesis are widespread among teleost fish

    Get PDF
    Docosahexaenoic acid (DHA) plays important physiological roles in vertebrates. Studies in rats and rainbow trout confirmed that DHA biosynthesis proceeds through the so-called “Sprecher pathway”, a biosynthetic process requiring a Δ6 desaturation of 24:5n-3 to 24:6n-3. Alternatively, some teleosts possess fatty acyl desaturases 2 (Fads2) that enable them to biosynthesis DHA through a more direct route termed the “Δ4 pathway”. In order to elucidate the prevalence of both pathways among teleosts, we investigated the Δ6 ability towards C24 substrates of Fads2 from fish with different evolutionary and ecological backgrounds. Subsequently, we retrieved public databases to identify Fads2 containing the YXXN domain responsible for the Δ4 desaturase function, and consequently enabling these species to operate the Δ4 pathway. We demonstrated that, with the exception of Δ4 desaturases, fish Fads2 have the ability to operate as Δ6 desaturases towards C24 PUFA enabling them to synthesise DHA through the Sprecher pathway. Nevertheless, the Δ4 pathway represents an alternative route in some teleosts and we identified the presence of putative Δ4 Fads2 in a further 11 species and confirmed the function as Δ4 desaturases of Fads2 from medaka and Nile tilapia. Our results demonstrated that two alternative pathways for DHA biosynthesis exist in teleosts

    Biosynthesis of long-chain polyunsaturated fatty acids in the razor clam Sinonovacula constricta: characterization of four fatty acyl elongases and a novel desaturase capacity

    Get PDF
    As an unusual economically important aquaculture species, Sinonovacula constricta possesses high levels of long-chain polyunsaturated fatty acids (LC-PUFA). Previously, our group identified fatty acyl desaturases (Fad) with Δ5 and Δ6 activities in S. constricta, which was the first report of Δ6 Fad in a marine mollusc. Here, we further successfully characterize elongases of very long-chain fatty acids (Elovl) in this important bivalve species, including one Elovl2/5, two Elovl4 isoforms (a and b) and a novel Elovl (c) with Elovl4 activity. In addition, we also determined the desaturation activity of S. constricta Δ6 Fad toward 24:5n-3 to give 24:6n-3, a key intermediate in docosahexaenoic acid (DHA) biosynthesis. Therefore, S. constricta is the first marine mollusc reported to possess all Fad and Elovl activities required for LC-PUFA biosynthesis via the ‘Sprecher pathway’. This finding greatly increases our understanding of LC-PUFA biosynthesis in marine molluscs. Phylogenetic analysis by interrogating six marine molluscan genomes, and previously functionally characterized Elovl and Fad from marine molluscs, suggested that DHA biosynthetic ability was limited to a few species, due to the general lack of Δ4 or Δ6 Fad in most molluscs

    Elongation of very long-chain (>C24) fatty acids in Clarias gariepinus: Cloning, functional characterization and tissue expression of elovl4 elongases

    Get PDF
    Elongation of very long-chain fatty acid 4 (Elovl4) proteins participate in the biosynthesis of very long-chain (>C24) saturated and polyunsaturated fatty acids (FA). Previous studies have shown that fish possess two different forms of Elovl4, termed Elovl4a and Elovl4b. The present study aimed to characterize both molecularly and functionally two elovl4 cDNA from the African catfish Clarias gariepinus. The results confirmed that C. gariepinus possessed two elovl4-like elongases with high homology to two previously characterized Elovl4 from Danio rerio, and thus they were termed accordingly as Elovl4a and Elovl4b. The C. gariepinus Elovl4a and Elovl4b have open reading frames (ORF) of 945 and 915 base pairs, respectively, encoding putative proteins of 314 and 304 amino acids, respectively. Functional characterization in yeast showed both Elovl4 enzymes have activity towards all the PUFA substrates assayed (18:4n-3, 18:3n-6, 20:5n-3, 20:4n-6, 22:5n-3, 22:4n-6 and 22:6n-3), producing elongated products of up to C36. Moreover, the C. gariepinus Elovl4a and Elovl4b were able to elongate very long-chain saturated FA (VLC-SFA) as denoted by increased levels of 28:0 and longer FA in yeast transformed with elovl4 ORF compared to control yeast. These results confirmed that C. gariepinus Elovl4 play important roles in the biosynthesis of very long-chain FA. Tissue distribution analysis of elovl4 mRNAs showed both genes were widely expressed in all tissues analyzed, with high expression of elovl4a in pituitary and brain, whereas female gonad and pituitary had the highest expression levels for elovl4b

    The prevalence of Helminth parasites in the gastro-intestinal tract of wild African sharptooth catfish Clarias gariepinus (Siluriformes: Clariidae) in Gwagwalada, Nigeria

    Get PDF
    A study on the gastro-intestinal helminth parasites of wild C. gariepinus was carried out in Gwagwalada Area Council of FCT, Abuja, Nigeria. A total of 110 samples were examined which includes 42 males and 68 females. Forty-eight (43,64%) fishes were infected with various species of helminth, which includes Wenyonia spp (28,18%), Procamallanus laevionchus (11,82%) and Euclinostomum heterostomum (3,64%). The female fish had the highest percentage prevalence (28,18%) while the males had 15,46% prevalence. Most of the parasites were recovered from the intestinal lumen. There was some degree of specificity in their distribution within the host but there was no significant difference (P>0,05) between the standard length, body weight, number of fish infected, prevalence and the intensity of infection.KEY WORDSHelminth parasites, Wild, C. gariepinus, Gastro-intestinal tract, GwagwaladaEstudio sobre helmintos parásitos gastro-intestinales de C. gariepinus silvestre en Gwagwalada, Consejo del Área de FCT, Abuja. Un total de 110 muestras examinadas incluyeron 42 machos y 68 hembras. Cuarenta y ocho (43,64%) peces se encontraban infectados con diversas especies de helmintos como Wenyonia spp (28,18%), Procamallanus laevionchus (11,82%) y Euclinostomum heterostomum (3,64%). Los peces hembra tenían el mayor porcentaje de prevalencia (28,18%), mientras que los machos tenían 15,46%. La mayoría de los parásitos se encontraron en el lumen intestinal. Hubo algún grado de especificidad en la distribución dentro del huésped, pero no hubo diferencia significativa (P> 0,05) entre la longitud estándar, el peso corporal, el número de peces infectados, la prevalencia y la intensidad de la infección.PALABRAS CLAVEHelmintos parásitos, silvestre, C. gariepinus, tracto gastrointestinal, Gwagwalad

    Elongation of very long chain fatty acids in the African Catfish Clarias gariepinus: cloning, functional chracterisation and tissue distribution of ELOVL4 Elongases

    No full text
    Trabajo presentado en Aquaculture Europe 2016: Food for Thought, celebrado en Edimburgo (Escocia) del 21 al 23 de septiembre de 2016Elongation of very-long chain fatty acid (Elovl) proteins are enzymes that catalyse the condensation reaction, the first and rate-limiting step out of four sequential reactions required for the elongation of fatty acids (FAs) (Jakobsson et al., 2006). Seven members (Elovl1-7) make up the elongase protein family in vertebrates, with Elovl4 having a major role in the biosynthesis of very long-chain (≥ C24) FAs of both saturated and polyunsaturated (VLC-PUFA) acyl chains (Agbaga et al., 2008). Recent studies have shown that fish possess two different forms of Elovl4, namely Elovl4a and Elovl4b, with different functions and spatial-temporal expression patterns during development (Monroig et al., 2010). We have recently initiated the investigation of Elovl and fatty acyl desaturase (Fads) genes that participate in the biosynthesis of essential FAs in Clarias gariepinus, a commercially important fish species in Africa (Oboh et al., 2016). In this study, we aimed to characterise both molecularly and functionally two elovl4 cDNAs from C. gariepinus, and investigate their tissue distributionThis work was also funded by the Spanish Government grant LONGFAQUA (AGL2013-40986-R).Peer reviewe
    corecore