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ABSTRACT 

As an unusual economically important aquaculture species, Sinonovacula constricta 

possesses high levels of long-chain polyunsaturated fatty acids (LC-PUFA). Previously, 

our group identified fatty acyl desaturases (Fad) with Δ5 and Δ6 activities in S. 

constricta, which was the first report of Δ6 Fad in a marine mollusc. Here, we further 

successfully characterize elongases of very long-chain fatty acids (Elovl) in this 

important bivalve species, including one Elovl2/5, two Elovl4 isoforms (a and b) and a 

novel Elovl (c) with Elovl4 activity. In addition, we also determined the desaturation 

activity of S. constricta Δ6 Fad toward 24:5n-3 to give 24:6n-3, a key intermediate in 

docosahexaenoic acid (DHA) biosynthesis. Therefore, S. constricta is the first marine 

mollusc reported to possess all Fad and Elovl activities required for LC-PUFA 

biosynthesis via the ‘Sprecher pathway’. This finding greatly increases our 

understanding of LC-PUFA biosynthesis in marine molluscs. Phylogenetic analysis by 

interrogating six marine molluscan genomes, and previously functionally characterized 

Elovl and Fad from marine molluscs, suggested that DHA biosynthetic ability was 

limited to a few species, due to the general lack of Δ4 or Δ6 Fad in most molluscs. 

 

Keywords: docosahexaenoic acid biosynthesis; fatty acyl desaturases; elongation of 

very long-chain fatty acids protein; Long-chain polyunsaturated fatty acids; 

Sinonovacula constricta 
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1. Introduction 

In vertebrates, long-chain (≥ C20) polyunsaturated fatty acids (LC-PUFA), 

especially arachidonic acid (20:4n-6, ARA), eicosapentaenoic acid (20:5n-3, EPA) and 

docosahexaenoic acid (22:6n-3, DHA), are key components of cellular membranes, 

determining their properties, and also serve as precursors of eicosanoids, affecting 

signal transductions [1, 2]. Moreover, LC-PUFA and their metabolites are essential for 

various physiological processes including neurological development and the immune 

response, and can be beneficial in mitigating several pathologies [3-5]. Provision of 

LC-PUFA in vertebrates can be via the diet directly or through endogenous production 

(biosynthesis) from dietary essential C18 polyunsaturated fatty acids (PUFA), linoleic 

acid (18:2n-6, LA) and α-linolenic acid (18:3n-3, ALA) [6]. Two types of enzymes, 

namely elongation of very long-chain fatty acid (Elovl) proteins and front-end 

desaturases play major roles in vertebrate LC-PUFA biosynthetic pathways [6]. Elovl 

enzymes are rate-limiting enzymes in fatty acid (FA) elongation pathways and catalyze 

the condensation reaction [6, 7]. Of the seven members of the Elovl family (Elovl1-7) 

described in vertebrates, only Elovl2, Elovl4 and Elovl5 have demonstrated elongation 

ability towards PUFA substrates [6, 7]. Typically, Elovl5 exhibits high activity toward 

C16-20 PUFA substrates, Elovl2 shows high activity toward C20-22 PUFA, whereas 

Elovl4 is involved in the biosynthesis of very long-chain PUFA (VLC-PUFA; ˃ C24) 

present especially in retina [8, 9]. In addition to elongases, vertebrates possess two 

distinct front-end desaturases termed Fads1 and Fads2 primarily with Δ5 and Δ6 

desaturase activity, respectively [6]. Typically, Fads1 plays a key role in the 
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biosynthesis of ARA and EPA by desaturation of 20:3n-6 and 20:4n-3, respectively. 

Fads2 is involved in the desaturation of LA and ALA to give 18:3n-6 and 18:4n-3, 

respectively. Importantly, Fads2 also catalyze the rate-limiting step in DHA 

biosynthesis by conversion of 24:5n-3 to produce 24:6n-3, which is then partially β-

oxidized to DHA via the Sprecher pathway [10]. 

Unlike vertebrates, the pathways of LC-PUFA biosynthesis in invertebrates have 

been less investigated [11, 12]. However, marine molluscs are arguably the group of 

aquatic invertebrates in which the biosynthesis of LC-PUFA has been most extensively 

investigated [11-13], partly driven by their critical roles in aquatic ecology and trophic 

cascade, as well as their importance as sources of health-promoting LC-PUFA for 

human consumers [14]. Marine molluscs have been demonstrated to possess genes 

encoding enzymes with roles in the biosynthesis of LC-PUFA [11-13, 15]. Interestingly, 

the biosynthetic capability of LC-PUFA in marine molluscs varies greatly among 

species and depends highly on their complement of desaturase and elongase genes, as 

well as their enzymatic activities [12]. Two different types of Elovl with roles in LC-

PUFA biosynthesis have been characterized from marine molluscs. More specifically, 

an enzyme called “Elovl2/5”, regarded as an ancestral protein of the vertebrate Elovl2 

and Elovl5 [16], has been characterized from the cephalopods Octopus vulgaris and 

Sepia officinalis [17, 18], and the bivalves Chlamys nobilis and Crassostrea angulate 

[19, 20]. Furthermore, Elovl4 orthologs have been characterized from C. nobilis and O. 

vulgaris [21, 22]. Meanwhile, two different fatty acyl desaturases (Fad) involved in LC-

PUFA biosynthesis have been identified from marine molluscs, including Δ5 Fad from 
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O. vulgaris [23], S. officinalis [18], C. nobilis [24] and the gastropod Haliotis discus 

hannai [25], as well as a Δ8 Fad from C. nobilis [21]. 

As an economically important bivalve species, the razor clam Sinonovacula 

constricta, is widely distributed in estuarine and intertidal zones along the coasts of the 

West Pacific Ocean. It is one of the five principal marine molluscs in the global 

aquaculture industry, with a total production of over 823,000 tons, with a value of 

US$ 1.3 billion in 2016 [26]. From a nutritional point of view, S. constricta is a good 

source of health-promoting omega-3 (or n-3) LC-PUFA, especially DHA, which 

accounts for about 10% of the total FA [27]. Recently, three Fad were successfully 

characterized from S. constricta [28], two of which showed Δ5 desaturase activity and 

will be referred to as “Δ5 Fad_a” and “Δ5 Fad_b”. A third Fad enzyme from S. 

constricta had Δ6 desaturase activity and will be termed herein as “Δ6 Fad”. 

Importantly, S. constricta Δ6 Fad, the first report of a Δ6 desaturase in a marine mollusc, 

was able to desaturate both 18:3n-3 and 18:2n-6, but activity towards 24:5n-3, 

necessary for the Sprecher pathway [10], was not tested [28]. Moreover, no functional 

characterization of Elovl was reported in S. constricta. 

The present study aimed to systematically characterize the complete repertoire of 

Elovl with putative roles in LC-PUFA biosynthesis pathway in S. constricta. Here we 

report on the molecular and functional characterization of four distinct Elovl genes, 

including one Elovl2/5, two Elovl4 (a and b isoforms) and a novel Elovl (termed 

Elovl_c). Furthermore, we investigated the ability of S. constricta Δ6 Fad to desaturate 

24:5n-3 to 24:6n-3, so that we could establish whether this species has the potential to 
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operate the Sprecher pathway. 

 

2. Materials and methods 

2.1. Full-length cloning of S. constricta Elovl cDNAs 

Total RNA was extracted from mixed tissues including muscle, gill and gonad of 

adult S. constricta specimens (55.23 ± 3.31 mm × 17.82 ± 1.21 mm, shell length × shell 

width; mean ± SD, n = 6) using MiniBEST Universal RNA Extraction Kit (TaKaRa, 

Japan). RNA quality was determined by running a subsample (~600 ng) on a 1 % 

agarose gel and RNA concentration was measured using a NanoDrop® ND-1000 

(NanoDrop, USA). One µg of total RNA was reverse transcribed to cDNA using 

PrimeScriptTM RT-PCR Kit (TaKaRa) and the resulting cDNA was used as template to 

isolate the full-length cDNA sequences of S. constricta Elovl by polymerase chain 

reaction (PCR). 

First fragment S. constricta cDNA sequences with high homology to Elovl2/5 and 

Elovl4 sequences of vertebrates or marine molluscs, including one Elovl2/5, one pair 

of Elovl4 isoforms (a and b) and a novel Elovl (c), were obtained by searching against 

the transcriptome data. Moreover, gene specific primers (series of primer pairs of V-F 

and V-R, Table 1) were designed using Primer 5 to verify the target fragments. PCR 

was conducted using LA Taq® Hot Star Version (TaKaRa) (Table S1) and purified PCR 

fragments (Cat#DP1722, BioTeke, Co., Ltd, Beijing, China) were sequenced (BGI 

Tech Co., Ltd, Shanghai, China). Sequences of putative Elovl cDNAs were used to 

design gene-specific primers for rapid amplification of cDNA ends (RACE)-PCR 
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(SMARTer® RACE 5´/3´ Kit, Clontech, USA) to obtain full-length cDNAs (Table 1). 

The RACE-PCR analyses were performed with two-round nested PCR using a 

combination of gene-specific primers and primers designed on the RACE adaptor 

(Clontech) (Table S1). Potentially positive RACE-PCR fragments were sequenced as 

above. Finally, full-length cDNAs of four S. constricta Elovl cDNAs were obtained by 

aligning the first fragment with 5´ and 3´ RACE-PCR fragments (ClustalW 2.1) [29]. 

Where necessary purified PCR products were cloned into pMDTM 18-T Vector 

(TaKaRa) and transformed into E. coli DH5α competent cells. The recombinant single 

colonies successfully grown in LB plates containing ampicillin were selected, incubated 

and sequenced as above. 

 

2.2. Retrieval of candidate Elovl and Fad sequences from six marine molluscan 

genomes 

To examine the distribution and evolutionary diversity of marine mollusc genes 

encoding Elovl and Fad with potential roles in LC-PUFA biosynthesis, an extensive 

search was performed against currently available marine molluscan genomes from 

Aplysia californica (NCBI, genome ID: 443), Crassostrea gigas (NCBI, genome ID: 

10758), Crassostrea virginica (NCBI, genome ID: 398), Lottia gigantea (NCBI, 

genome ID: 15113), Mizuhopecten yessoensis (NCBI, genome ID: 12193) and Octopus 

bimaculoides (NCBI, genome ID: 41501). Briefly, we first retrieved protein sequences 

from all the putative Elovl and Fad from corresponding genomes based on functional 

annotations. Subsequently, identical sequences of the same gene were discarded, and 
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the longest sequence was reserved for subsequent analysis. Finally, all hits of the 

putative Elovl sequences were selected by the presence of the diagnostic histidine box 

(H**HH) conserved in all members of the Elovl family [30]. Furthermore, selection of 

putative Fad sequences was based on the presence of the three histidine boxes (H***H, 

H**HH and QIEHH) and N-terminal cytochrome b5 domain with the heme-binding 

motif HPGG conserved in front-end desaturases [30]. The retrieved Elovl and Fad 

sequences from the genomes of the six molluscan species are shown in Table S2. 

 

2.3. Sequence and phylogenetic analyses of S. constricta Elovl sequences 

The deduced amino acid (aa) sequences of the newly cloned S. constricta Elovl2/5, 

Elovl4_a, Elovl4_b and Elovl_c were aligned by using ClustalW 2.1 [29]. A 

phylogenetic tree was constructed (MEGA 7) [31] with the deduced aa sequences from 

the newly cloned S. constricta Elovl cDNA sequences, and Elovl protein sequences of 

vertebrates and marine molluscs both retrieved in silico (Table S2) or functionally 

characterized in previous studies (Table S3). The phylogenetic analysis was performed 

with the maximum-likelihood approach, with confidence in the resulting phylogenetic 

tree branch topology measured by bootstrapping through 1,000 iterations. At the same 

time, a phylogenetic tree regarding marine molluscan Fad was constructed using the 

same method. 

 

2.4. Functional characterization of S. constricta Elovl by heterologous expression in 

yeast 
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PCR fragments corresponding to the open reading frames (ORF) of the S. constricta 

Elovl sequences were amplified by PrimeScriptTM П High Fidelity RT-PCR Kit 

(TaKaRa) (Table S1) using primers containing restriction sites for KpnI and EcoRI 

(underlined in Table 1). The resulting PCR fragments were purified, digested with the 

corresponding restriction endonucleases (New England BioLabs, USA) and inserted 

into similarly digested pYES2 vector (Invitrogen, USA) using DNA Ligation Kit 

(TaKaRa). Subsequently, the resulting recombinant plasmids pYelovl2/5, pYelovl4_a, 

pYelovl4_b and pYelovl_c were first transformed into E. coil DH5α competent cells to 

produce plasmid preparations for each Elovl gene. Plasmid preparations with correct 

sequences were subsequently transformed into yeast Saccharomyces cerevisiae InvSc1 

competent cells using the S.c. EasyComp Transformation Kit (Invitrogen, USA). A 

control treatment consisting of yeast transformed with the empty pYES2 vector was 

also run. Selection of transformant yeast was performed on S. cerevisiae minimal 

medium-uracil (SCMM-uracil) plates. One single colony of yeast transformed with either 

pYelovl2/5, pYelovl4_a, pYelovl4_b, pYelovl_c or empty pYES2 vector were used in 

each experiment. Yeast were first cultured in SCMM-uracil broth for 24 h. Subsequently, 

the cultures were centrifuged at 500 g for 2 min at room temperature. The precipitated 

yeast was further diluted with induction medium consisting of SCMM-uracil broth and 

2 % galactose to reach OD600 = 0.4. At this point, one of the potential PUFA substrates, 

18:2n-6, 18:3n-3, 18:3n-6, 18:4n-3, 20:4n-6, 20:5n-3, 22:4n-6 or 22:5n-3, were added. 

The FA substrate concentration was established at 0.5 mM (C18), 0.75 mM (C20) and 1 

mM (C22) as uptake efficiency decreases with increasing chain [32]. Finally, after 
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incubation at 30 °C for 48 h, yeast was harvested by centrifugation at 1,000 g for 1 min, 

washed twice with 5 mL ice-cold Hanks’s Balanced Salt Solution (Invitrogen, USA) 

and freeze-dried for further FA analysis. 

 

2.5. Determination of ∆6 desaturase activity of the S. constricta Δ6 Fad towards 

24:5n-3 in co-transformant yeast 

Previously, a Fad from S. constricta was shown to desaturate C18 PUFA at the Δ6 

position [28]. However, it remained unclear whether this enzyme could also act as a Δ6 

desaturase towards 24:5n-3 and thus contribute to DHA biosynthesis through the 

Sprecher pathway [10]. Following the same procedure as described by Oboh et al [33], 

ScInv1 S. cerevisiae were transformed with the constitutive expression plasmid 

p415TEF containing the ORF of Danio rerio Elovl2 (NP_001035452) and the inducible 

expression plasmid pYES2 containing the ORF of S. constricta Δ6 Fad (MH220406). 

The yeast assay was run as detailed by Oboh et al [33], with 22:5n-3 supplied at 1 mM 

concentration. A control treatment of co-transformed recombinant yeast grown in the 

presence of 18:3n-3 was also run. Yeast samples were collected and processed as 

described above for elongase assays. 

 

2.6. FA analyses of yeast 

Total lipids extracted from freeze-dried yeast samples [34] collected from the S. 

constricta Elovl2/5 and Δ6 Fad assays were used to prepare fatty acid methyl esters 

(FAME) as described by Xu et al [35], and FAME identified as described by Ran et al 
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[28]. FAME of samples from functional characterization assays of S. constricta 

Elovl4_a, Elovl4_b and Elovl_c were prepared as described by Oboh et al [36]. 

Identification of FAME from PUFA up to C24 was carried out by comparing retention 

times of peaks from known standards and databases (NIST 14.L). For VLC-PUFA, the 

response values of FAME were obtained by using the m/z ratios 79.1, 108.1 and 150.1 

in the single ion monitoring (SIM) mode operated GC-MS [37]. All organic solvent 

mixtures used during lipid extraction and FAME preparation processes contained 0.01% 

(w/v) butylated hydroxytoluene (BHT, Sigma, China) to prevent oxidation. For 

elongase assays, conversion of PUFA substrates was calculated by the step-wise 

proportion of FA substrate converted to elongated product as [areas of first product and 

longer chain products / (areas of all products with longer chain than substrate + substrate 

area)] × 100 %. For S. constricta ∆6 Fad, the ability to convert 24:5n-3 to 24:6n-3 was 

calculated as [area of 24:6n-3 / (area of 24:6n-3 + area of 24:5n-3)] × 100 %. A similar 

equation was used to calculate the conversion of 18:3n-3 to 18:4n-3 established as a 

positive control in the S. constricta ∆6 Fad assay [33]. 

 

2.7. Tissue distribution of S. constricta Elovl mRNA 

Tissue distribution of the newly cloned S. constricta Elovl mRNA was analyzed by 

quantitative real-time PCR (qPCR). Adult specimens (n = 18) of S. constricta (55.23 ± 

3.31 mm × 17.82 ± 1.21 mm, shell length × shell width, mean ± SD) were purchased 

from a local market in Ningbo, China. After acclimation for 3 days to allow evacuation 

of the intestinal tract, total RNA was extracted from 10 tissues including mantle, labial 
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palps, inhalant siphon, exhalant siphon, foot muscle, intestine, gill, digestive glands, 

gonad and heart. Each tissue was sampled from six individuals and pooled, and 

triplicate samples prepared. One μg of total RNA was reverse transcribed to cDNA 

using PrimeScriptTM RT Master Mix (Perfect Real Time, TaKaRa). The qPCR was 

conducted on a quantitative thermal cycler (Mastercycler ep realplex, Eppendorf, 

Germany) using SYBR® Premix Ex TaqTM Ⅱ (Tli RNaseH Plus) (TaKaRa) (Table S1) 

and primers as shown in Table 1. Both β-actin and 18S rRNA were selected as reference 

genes (Table 1). The relative expression of S. constricta Elovl was calculated by the 2-

ΔΔCT method [38], and presented as the geometric means of qRT-PCR results derived 

from the expression of the two reference genes. Expression of candidate Elovl genes in 

all tissues were calculated in relation to that of foot muscle, which showed the lowest 

expression level among all tissues considered. 

 

2.8. Statistical Analysis 

Relative tissue distribution of S. constricta Elovl mRNA was analyzed by one-way 

analysis of variance (ANOVA), followed by Newman-Keuls tests (IBM SPSS Statistics 

22.0 software, USA). A P value < 0.05 was considered statistically significant. Gene 

expression data were represented as means and standard deviation (n = 6). 

 

3. Results 

3.1. Sequences and phylogenetics of the S. constricta Elovl 

The ORF of S. constricta Elovl2/5 was 933 bp encoding a polypeptide of 310 aa 



13 

 

(Fig. 1). The ORFs of S. constricta Elovl4_a and Elovl4_b were both 876 bp encoding 

polypeptides of 291 aa, whereas the ORF of S. constricta Elovl_c contained 912 bp 

encoding 303 aa (Fig. 1). Notably, S. constricta Elovl4_a and Elovl4_b shared high 

identity (89.69 %) in terms of aa sequence, with the main different aa region between 

them being highlighted with a bold line square in Fig. 1. The detailed sequences of S. 

constricta Elovl2/5, Elovl4_a, Elovl4_b and Elovl_c were deposited in the GenBank 

database with accession numbers MK134691-MK134694, respectively. 

The phylogenetic results showed that the S. constricta Elovl2/5 was grouped 

together with functionally characterized Elovl2/5 from O. vulgaris, S. officinalis and C. 

nobilis, as well as Elovl2-like and Elovl5-like from the six examined marine molluscs 

(Fig. 2). Together, they formed a cluster close to vertebrate Elovl2 and Elovl5. Similarly, 

S. constricta Elovl4_a and Elovl4_b were grouped together with functionally 

characterized molluscan Elovl4 from C. nobilis and O. vulgaris, as well as Elovl4-like 

from the six examined marine molluscs (Fig. 2). Together, they formed a cluster close 

to vertebrate Elovl4. In contrast, S. constricta Elovl_c and some Elovl-like from five 

examined marine molluscs other than L. gigantea were grouped together (Fig. 2), which 

were most closely related to vertebrate Elovl1 and Elovl7. 

 

3.2. Functional characterization of newly cloned S. constricta Elovl cDNAs 

The FA composition of yeast transformed with empty pYES2 vector contained only 

the yeast endogenous FA (mainly 16:0, 16:1n-7, 18:0, 18:1n-9 and 26:0), together with 

the corresponding exogenously added PUFA. In contrast, additional PUFA were 
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identified in yeast transformed with all four Elovl sequences cloned from S. constricta. 

When yeast was transformed with pYelovl2/5 (Table 2, Fig. S1), elongation activity 

toward C18 and C20 PUFA substrates was observed, indicating that S. constricta Elovl2/5 

possesses typical vertebrate Elovl5 activity and exhibited higher affinity toward n-6 

PUFA compared to n-3 PUFA. However, S. constricta Elovl2/5 showed no elongation 

activity towards C22 PUFA substrates (i.e., 22:4n-6 and 22:5n-3). Furthermore, S. 

constricta Elovl2/5 also displayed some elongation activity towards monoenes, since 

the yeast endogenous FAs 16:1n-7 and 18:1n-9 were elongated to 18:1n-7 and 20:1n-7, 

and 20:1n-9 and 22:1n-9, respectively (data not shown). 

When yeast were transformed with pYelovl4_a, pYelovl4_b and pYelovl_c (Table 

3, Fig. S2), all the exogenously added PUFA substrates were elongated to different 

extents. On one hand, low levels of C18 PUFA were elongated to longer products up to 

C22 in the case of Elovl_c (Table 3). On the other hand, S. constricta Elovl4_a, Elovl4_b 

and Elovl_c exhibited higher conversions towards C20 and C22 PUFA substrates, which 

were elongated in some instances up to products with C34 (Table 3). Importantly, the 

three elongases were all able to elongate 22:5n-3 to 24:5n-3, a key intermediate in DHA 

biosynthesis via the Sprecher pathway. 

 

3.3. Determination of Δ6 activity of S. constricta Δ6 Fad towards 24:5n-3 in co-

transformant yeast 

The control treatment consisting of yeast co-expressing the D. rerio Elovl2 and the 

S. constricta Δ6 Fad showed that the exogenously added substrate (18:3n-3) was 
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elongated to 20:3n-3 by the action of D. rerio Elovl2 and, importantly, was also 

desaturated to 18:4n-3 confirming the previously reported Δ6 desaturase activity (Fig. 

3A) [28]. When co-transformant yeast were incubated in the presence of 22:5n-3, a peak 

corresponding to the elongation product 24:5n-3 was detected and a further peak 

identified as 24:6n-3 was also detected (Fig. 3B), denoting a Δ6 desaturase product 

from 24:5n-3. 

 

3.4. Tissue distribution of S. constricta Elovl mRNA 

Transcripts of S. constricta Elovl encoding genes were detected in all examined 

tissues (Fig. 4). Specifically, the highest expression of S. constricta Elovl2/5 was 

detected in digestive gland, followed by intestine and labial palps, with relatively low 

expression in other tissues. S. constricta Elovl4_a was mostly expressed in gill, 

followed by labial palps, and gonad, whereas Elovl4_b was highly expressed in labial 

palps and gill, followed by intestine. The highest expression of S. constricta Elovl_c 

was detected in mantle, followed by gill, labial palps and intestine. 

 

4. Discussion 

The deduced aa sequences of S. constricta Elovl all contained a diagnostic histidine 

box, which is conserved in all Elovl family members [30], indicating that Elovls have 

functional regions highly conserved during evolution. Notably, all four sequences 

contained a diagnostic “Q” (glutamine) in position -5 from the H**HH, characteristic 

of PUFA elongases and which is not present in non-PUFA elongases [30], indicating 
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that they all may play possible roles in PUFA elongation. Consistent with this, the 

elongases were demonstrated to elongate PUFA substrates by heterologous functional 

characterization. Interestingly, two Elovl4 isoforms (Elovl4_a and Elovl4_b) were 

identified in S. constricta. This was in contrast to pre-existing knowledge that there was 

a single Elovl4 isoform characterized from C. nobilis and O. vulgaris [21, 22], but was 

consistent with findings in most teleosts [6, 39]. More importantly, a novel S. constricta 

Elovl (Elovl_c) with Elovl4 activity, sharing similar phylogeny with some marine 

molluscan Elovl-like (not functionally characterized), was grouped closely to vertebrate 

Elovl1 and Elovl7, indicating that they couldn’t be defined as Elovl4 strictly and might 

be recognized as novel Elovl members. 

The phylogenic results of Elovl suggested that Elovl2/5 and Elovl4 might all be 

present in the six examined marine molluscs. To further understand their capacity to 

biosynthesize LC-PUFA, a phylogenetic tree regarding Fad was also constructed (Fig. 

S3). The resulting tree indicated that Δ5 Fad might also be a common gene in the six 

examined marine molluscs, but this was not the case with Δ4, Δ6 and Δ8 Fad. Notably, 

Δ4 Fad could directly desaturate 22:5n-3 to produce DHA compared with the more 

complicated Sprecher pathway [40]. Therefore, a similar conclusion with that of 

Monroig et al [22] can be reached that the limited DHA biosynthetic capability of 

marine molluscs might be a consequence of the lack of Δ4 or Δ6 Fad. However, multiple 

functional genes might also exist in marine molluscs to complete the Δ4 or Δ6 Fad 

desaturation step, as in some teleosts [6], but this requires further investigation. 

Importantly, no multiple functional Fad genes were found in S. constricta [28]. 
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Furthermore, multiple transcripts of Elovl4 and Δ5 Fad might be a common 

phenomenon in some marine molluscs, indicating that lineage specific duplication 

events might have occurred in the evolution and expansion of those genes in these 

species but not in the cephalopods. 

Similar to Elovl2/5 from O. vulgaris, S. officinalis, C. nobilis and C. angulate [17-

20], the elongation efficiencies of S. constricta Elovl2/5 toward n-6 LC-PUFA were 

higher than toward the homologous n-3 LC-PUFA. This indicated that n-6 LC-PUFA 

might be particularly important for the normal development of marine molluscs 

including S. constricta. From another point of view, it might be associated with their 

living conditions that the easy availability of n-3 LC-PUFA of natural diets might 

influence the corresponding activities of Elovl2/5. Previously, it was hypothesized that 

the elongation activity of Elovl4 toward C22 might be an adaptive strategy to 

compensate the loss of Elovl2 activity in several molluscan Elovl2/5 [12], and it may 

be similar with S. constricta. 

The retention of three transcripts with Elovl4 activity in S. constricta might have 

resulted from their respective substrate specificities and specific tissues distributions. 

The elongated PUFA of different carbon chain length could have critical physiological 

significance for this bivalve, which requires further investigations. Importantly, the 

three S. constricta Elovl all possessed the ability to elongate 20:5n-3 and 22:5n-3 to 

give 24:5n-3, which can be further desaturated to 24:6n-3 by S. constricta Δ6 Fad. 

Although DHA production from β-oxidation of 24:6n-3 was not determined directly, it 

is speculated that DHA could be biosynthesized in this bivalve. To confirm this 
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hypothesis, further research using radiolabeled C18 precursor or feeding diets lacking 

DHA is required. 

Consistent with the tissue distributions of S. constricta Fad [37], intestine and gonad 

exhibited relatively high expressions of S. constricta Elovl, indicating that the two 

tissues might be major metabolic sites of LC-PUFA in this bivalve species. Interestingly, 

the highest expressions of S. constricta Elovl2/5, Elovl4_a and Elovl_c were found in 

digestive glands, gill and mantle, respectively. In contrast, the highest expression of S. 

constricta Elovl4_b was detected in both labial palps and gill. The results suggested 

that the digestive glands might be an auxiliary organ of LC-PUFA biosynthesis, and 

LC-PUFA (especially ≥ C24) might be necessary for mantle, labial palps and gill to 

execute their respective physiological roles. 

In summary, S. constricta was demonstrated as the first marine mollusc with all Fad 

and Elovl activities required for LC-PUFA biosynthesis via the Sprecher pathway, 

which greatly increases our understanding of LC-PUFA biosynthesis in marine 

molluscs. Based on this finding, it was speculated that DHA could be endogenously 

biosynthesized in this important bivalve species. Meanwhile, the phylogenic results 

suggested that the DHA biosynthetic ability might be limited to a few specific 

molluscan species, with inability in many species mainly attributed to the lack of Δ4 or 

Δ6 Fad. 
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Figures 

 

 

Fig. 1. Amino acid (aa) sequence alignment of S. constricta Elovl2/5, Elovl4_a, 

Elovl4_b and Elovl_c by using ClustalW 2.1. The histidine box (H**HH) conserved 

among Elovl family members is highlighted with a solid line square. The diagnostic “Q” 

conserved in PUFA elongase is highlighted with a dotted line square. The different aa 

domains between S. constricta Elovl4_a and Elovl4_b are indicated with a bold line 

square. 
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Fig. 2. Phylogenetic tree comparing the deduced aa sequences of S. constricta Elovl 

(bold fonts) with Elovl1-7 proteins from representative mammals, amphibians, fish and 

marine molluscs. The tree was constructed using the maximum-likelihood approach 

with MEGA 7. The horizontal branch length is proportional to aa substitution rate per 

site. The numbers represent the frequencies with which the tree topology presented was 

replicated after 1,000 iterations. An asterisk indicates Elovl genes of A. californica, C. 

gigas, C. virginica, L. gigantea, M. yessoensis and O. bimaculoides that have not been 

functionally characterized but their complete genomes are currently available (Table 

S2).  
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Fig. 3. Characterization of the ability of S. constricta Δ6 Fad for ∆6 desaturation 

towards 24:5n-3 using yeast Saccharomyces cerevisiae. Fatty acid (FA) profiles of yeast 

co-transformed with the ORF of S. constricta Δ6 Fad and that of the zebrafish Danio 

rerio Elovl2 and grown in the presence of an exogenously added FA substrates 

(indicated as “*” in panels A and B). The 16:0, 16:1n-7, 18:0, 18:1n-9 and 26:0 are 

major yeast endogenous FA. Elongation (20:3n-3 and 24:5n-3) and ∆6 desaturation 

(18:4n-3 and 24:6n-3) products from exogenously added or endogenously produced FA 

are indicated accordingly.  
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Fig. 4. Tissue distributions of S. constricta Elovl. Expressions of S. constricta Elovl 

were examined by qPCR and normalized by β-actin. Relative expression of S. 

constricta Elovl in tissues were in relation to the normalized expression data in foot 

muscle, respectively. The values (means ± SD, n=3) sharing a common letter within the 

same color were not significantly different (P ≤ 0.05). 
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Tables 

 

Table 1 Primers used for S. constricta Elovl partial sequence verification (1st fragment 

PCR), full length cloning (RACE PCR), plasmid construction (ORF cloning) and tissue 

distribution (qPCR), respectively. The restriction sites of KpnI and EcoRI are 

underlined. 

transcript aim primer sequence 

Elovl2/5 1st fragment PCR V-F-Elovl2/5 ATGGCTGTTCCTGTTGTGTCAGA 

 

 

V-R-Elovl2/5 CACCACAGAAATCAGATGATTTTACA 

 RACE PCR 5’RACE-outer CCATGTTGACATGACCACCAGTCCGAG 

 

 

5’RACE-inner CGTCGATAACCACCCAGCGATCGTC 

 

 

3’RACE-outer TACTGTCTAGGGATTTAATTGGGCAGCC 

 

 

3’RACE-inner TGTAAAATCATCTGATTTCTGTGGTG 

 ORF cloning Elovl2/5-F GGGGTACCATGGCTGTTCCTGTTGTGTCAGA 

 

 

Elovl2/5-R CGGAATTCCTAATGTCTTTTGACTACACCATTTTTATGAC 

Elovl4_a/b 1st fragment PCR V-F-Elovl4_a/b GAGTTCTATGACTGGGCCCTCT 

 

 

V-R-Elovl4_a/b CCATCTGTCCATTGGACACTCC 

 RACE PCR 5'RACE-outer GCCATTTGAGCTTGTATGGTTCCCGAT 

 

 

5'RACE-inner GTTCTCCACACGCTTGTCTGCGACG  

 

 

3'RACE-outer GAAGCGCTACCTCACCATTATCCAACTG 

 

 

3'RACE-inner GCATGTGGCAAATGGAGTGTCCAATG  

 ORF cloning Elovl4_a/b-F GGGGTACCATGGAGGTGGTAGTAGACAAGTACA 

 

 

Elovl4_a/b-R CGGAATTCTTACTTCTTTTTCTTGGTTTCCATC 

Elovl_c 1st fragment PCR V-F-Elovl_c GGGACTGTCTAGCTACATCAGTGATC 

 

 

V-R-Elovl_c CTGTTGATGAATCACTGACGCC 

 RACE PCR 5'RACE-outer GTCCTCCAAGGATGACCACAAGGTAAGTG 

 

 

5'RACE-inner AAGCAACCAGTCCTGGGTACGTGGAT  
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3'RACE-outer GCTCTGCACACGTCAAGAAAACTGACCA 

 

 

3'RACE-inner GACATGTTGCCAATGGCGTCAGTGAT  

 ORF cloning Elovl_c-F GGGGTACCATGATGGGACTGTCTAGCTACATCA 

 

 

Elovl_c-R CGGAATTCCTAATCCTTTCTTGGACGTAATCGT  

 qPCR Elovl2/5-qF GCTCAACATTTGGTGGTGGGT 

  Elovl2/5-qR GGAATGACTGCCAGACCGTAG 

  Elovl4_a-qF TTGGGATCATTCACGCAGCC  

  Elovl4_a-qR GATGGTGAATGCGTAAAACACAAGA 

  Elovl4_b-qF TGCCGGTATGGTCTACGGTGT  

  Elovl4_b-qR GATTGTGACACCGTATACAAGCGAG 

  Elovl_c-qF TGCTATCTACTCGGACTGTGGC  

  Elovl_c-qR GTTTTCTTGACGTGTGCAGAGC 

 

 

β-actin-qF CCATCTACGAAGGTTACGCCC 

 

 

β-actin-qR TCGTAGTGAAGGAGTAGCCTCTTTC 

  18S-rRNA-qF ATGCTTTCGCTGTAGTTCGTCTTG 

  18S-rRNA-qR CTCGGTTCTATTGCGTTGGTTTT 
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Table 2 Functional characterization of S. constricta Elovl2/5: conversions of PUFA 

substrates. Individual conversion rates were calculated according to the formula [areas 

of first product and longer chain products / (areas of all products with longer chain than 

substrate + substrate area)] × 100%.  

PUFA substrate Product % Conversion Activity 

18:2n-6 20:2n-6 30.03 C18 → 22 

 22:2n-6 9.49 C20 → 22 

18:3n-3 20:3n-3 20.65 C18 → 22 

 22:3n-3 3.50 C20 → 22 

18:3n-6 20:3n-6 28.56 C18 → 22 

 22:3n-6 11.66 C20 → 22 

18:4n-3 20:4n-3 11.73 C18 → 22 

 22:4n-3 5.24 C20 → 22 

20:4n-6 22:4n-6 39.54 C20 → 22 

20:5n-3 22:5n-3 14.98 C20 → 22 

22:4n-6 24:4n-6 n.d. C22 → 24 

22:5n-3 24:5n-3 n.d. C22 → 24 

n.d., not detected. 
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Table 3 Functional characterization of S. constricta Elovl4_a, Elovl4_b and Elovl_c: 

conversions of PUFA substrates. Individual conversion rates were calculated according 

to the formula [areas of first product and longer chain products / (areas of all products 

with longer chain than substrate + substrate area)] × 100%.  

PUFA substrate Product 

% Conversion 

Activity 

pYelovl4_a pYelovl4_b pYelovl_c 

18:2n-6 20:2n-6 0.72 0.37 0.62 C18 → 20 

18:3n-3 20:3n-3 4.22 1.57 3.66 C18 → 20 

18:3n-6 20:3n-6 0.57 0.47 4.37 C18 → 22 

 22:3n-6 n.d. n.d. 3.00 C20 → 22 

18:4n-3 20:4n-3 0.90 0.49 5.25 C18 → 22 

 22:4n-3 n.d. n.d. 2.32 C20 → 22 

20:4n-6 22:4n-6 1.29 1.20 1.91 C20 → 26 

 24:4n-6 n.d. 10.43 37.21 C22 → 26 

 26:4n-6 n.d. n.d. 61.81 C24 → 26 

20:5n-3 22:5n-3 1.65 100 6.15 C20 → 34 

 24:5n-3 21.8 0.44 78.54 C22 → 34 

 26:5n-3 100 26.89 85.75 C24 → 34 

 28:5n-3 100 n.d. 31.36 C26 → 34 

 30:5n-3 100 n.d. 7.31 C28 → 34 

 32:5n-3 55.39 n.d. 100 C30 → 34 

 34:5n-3 27.06 n.d. 28.73 C32 → 34 

22:4n-6 24:4n-6 3.12 1.18 2.22 C22 → 30 

 26:4n-6 37.11 n.d. 32.33 C24 → 30 

 28:4n-6 100 n.d. n.d. C26 → 30 

 30:4n-6 42.16 n.d. n.d. C28 → 30 

22:5n-3 24:5n-3 10.14 2.13 14.94 C22 → 34 

 26:5n-3 59.89 n.d. 68.01 C24 → 34 
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 28:5n-3 100 n.d. 18.35 C26 → 34 

 30:5n-3 68.45 n.d. n.d. C28 → 34 

 32:5n-3 68.51 n.d. n.d. C30 → 34 

 34:5n-3 16.42 n.d. n.d. C32 → 34 

n.d., not detected. 
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Supplementary Tables 

Table S1 Summary of conditions of PCR. 

Aim Polymerase Conditions 

First fragment PCR TaKaRa LA Taq HS an initial denaturation step at 94℃ for 30 s, followed by 30 

cycles of denaturation at 98℃ for 10 s, annealing and extension 

at 68℃ for 1 min, followed by a final extension at 72℃ for 10 

min. 

RACE PCR SeqAmp DNA 

Polymerase 

first-round (touch-down PCR): 5 cycles of 94℃ for 30 s and 

72℃ for 3 min, 5 cycles of 94℃ for 30 s, 70℃ for 30 s and 72℃ 

for 3 min, 25 cycles of 94℃ for 30s, 68℃ for 30 s and 72℃ for 

3min. 
 

SeqAmp DNA 

Polymerase 

second-round (touch-down PCR): 5 cycles of 94℃ for 30 s and 

72℃ for 3 min, 5 cycles of 94℃ for 30 s, 70℃ for 30 s and 72℃ 

for 3 min, 25 cycles of 94℃ for 30s, 68℃ for 30 s and 72℃ for 

3min. 

ORF cloning PrimeSTAR GXL 30 cycles of 98℃ for 10 s, 55℃ for 15 s and 68℃ for 1 min. 

qPCR SYBR Premix Ex Taq an initial denaturation step at 95℃ for 30 s, followed by 35 

cycles of 95℃ for 5 s, 55℃ for 15 s and 72℃ for 20 s, followed 

by a melting curve from 58°C to 95°C with an increment of 

1.85°C/min. 
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Table S2 Protein sequences from potential Elovl and Fad involved in LC-PUFA 

biosynthesis in six marine molluscs, namely A. californica (NCBI, genome ID: 443), 

C. gigas (NCBI, genome ID: 10758), C. virginica (NCBI, genome ID: 398), L. gigantea 

(NCBI, genome ID: 15113), M. yessoensis (NCBI, genome ID: 12193) and O. 

bimaculoides (NCBI, genome ID: 41501). 

Species Gene Gene ID Prediction in database 

A. californica 

(genome ID: 443) 

Elovl XP_005098302.1 elongation of very long chain fatty acids protein 2-like 

isoform X3 
 

XP_005106660.1 elongation of very long chain fatty acids protein 4-like2 
 

XP_005095683.1 elongation of very long chain fatty acids protein 4-like 
 

Fad XP_005090573.1 fatty acid desaturase 1-like isoform X1 
  

XP_005090577.1 fatty acid desaturase 1-like isoform X2 
  

XP_012941605.1 fatty acid desaturase 2-like 
  

XP_005097048.1 fatty acid desaturase 2-like 
  

XP_005093182.1 fatty acid desaturase 2-like 

C. gigas (genome 

ID: 10758) 

Elovl XP_019917980.1 elongation of very long chain fatty acids protein 2-like 
 

XP_011450777.1 elongation of very long chain fatty acids protein 4 

isoform X2 
 

XP_011450775.1 elongation of very long chain fatty acids protein 4 

isoform X1 
  

XP_019929390.1 elongation of very long chain fatty acids protein 4 
  

XP_019918408.1 elongation of very long chain fatty acids protein 4 
 

Fad XP_011414051.1 fatty acid desaturase 2 isoform X2 
  

XP_011414050.1 fatty acid desaturase 2 isoform X1 
  

XP_011430931.1 fatty acid desaturase 2 

C. virginica 

(genome ID: 398) 

Elovl XP_022314572.1 elongation of very long chain fatty acids protein 2-like 
 

XP_022339255.1 elongation of very long chain fatty acids protein 4-like 

isoform X2 
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XP_022339230.1 elongation of very long chain fatty acids protein 4-like 

isoform X1 
  

XP_022339268.1 elongation of very long chain fatty acids protein 4-like 
  

XP_022330349.1 elongation of very long chain fatty acids protein 4-like 

isoform X2 
 

Fad XP_022323911.1 fatty acid desaturase 2-like isoform X3 
  

XP_022323910.1 fatty acid desaturase 2-like isoform X2 
  

XP_022320667.1 fatty acid desaturase 2-like 

L. gigantea 

(genome ID: 

15113) 

Elovl XP_009045720.1 elongation of very long chain fatty acids protein 5 

Fad XP_009051096.1 elongation of very long chain fatty acids protein 4 
 

XP_009049968 fatty acid desaturase like 
  

XP_009045077 fatty acid desaturase like 
  

XP_009051231 fatty acid desaturase 2 like 

M. yessoensis 

(genome ID: 

12193) 

Elovl XP_021341320.1 elongation of very long chain fatty acids protein 2-like 
 

XP_021345829.1 elongation of very long chain fatty acids protein 4-like 

isoform X1 
 

XP_021345830.1 elongation of very long chain fatty acids protein 4-like 

isoform X2 
  

XP_021345751.1 elongation of very long chain fatty acids protein 4-like 
 

Fad XP_021370917.1 fatty acid desaturase 2-like 
  

XP_021351912.1 fatty acid desaturase 2-like 

O. bimaculoides 

(genome ID: 

41501) 

Elovl XP_014785049.1 elongation of very long chain fatty acids protein 5-like 

isoform X2 
 

XP_014784234.1 elongation of very long chain fatty acids protein 4-like 

isoform X2 
 

XP_014773396.1 elongation of very long chain fatty acids protein 4-like 
  

XP_014773565.1 elongation of very long chain fatty acids protein 4-like 
 

Fad XP_014768102.1 fatty acid desaturase 2-like 
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Table S3 Functionally characterized Elovl and Fad cDNAs from marine molluscs 

including C. nobilis, H. discus hannai, O. vulgaris, S. officinalis, S. constricta and C. 

angulata. 

Species Gene  Description Accession number 

C. nobilis Elovl Elovl2/5 AGW22128.1 
  

Elovl4 no accession 
 

Fad Δ5 Fad AIC34709 
  

Δ8 Fad no accession 

H. discus hannai  Fad Δ5 Fad_a ADK38580 
  

Δ5 Fad_b ADK12703 

O. vulgaris Elovl Elovl2/5 AFM93779.1 
  

Elovl4 AIA58679.1 
 

Fad Δ5 Fad AEK20864 

S. officinalis Elovl Elovl2/5 AKE92956.1 
 

Fad Δ5 Fad AKE92955 

S. constricta Fad Δ5 Fad_a MH220404 
  

Δ5 Fad_b MH220405 
  

Δ6 Fad MH220406 

C. angulata Elovl Elovl2/5 no accession 
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Supplementary Figures 

 

Fig. S1. Functional characterization of S. constricta Elovl2/5. Fatty acid methyl esters were 

prepared from total lipids of yeast transformed with pYES2 alone (A-F) or pYES2 

expressing the S. constricta Elovl2/5 (pYScelovl2/5) (G-L). Peaks 1-4 are the main 

endogenous fatty acids (FAs) of S. cerevisiae, namely, 16:0, 16:1n-7, 18:0, and 18:1n-

9, respectively. The exogenously added FAs are highlighted with *. The FA products 

are also indicated in the corresponding panels. Note that 18:1n-7 was the elongation 

product of the yeast endogenous 16:1n-7. Similarly, 20:1n-9 and 22:1n-9 are the 

elongation products of the yeast endogenous 18:1n-9.  
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Fig. S2. Functional characterization of S. constricta Elovl4_a, Elovl4_b and 

Elovl_c. The exogenously added fatty acid (FA) substrates are highlighted with * and 

indicated following the capital letters. Each set of three chromatograms correspond to 

results obtained by expressing the S. constricta Elovl4_a (top) Elovl4_b (middle) and 

Elovl_c (bottom). All elongation products are indicated in each panel. 
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Fig. S3. Phylogenetic tree comparing the deduced aa sequences of S. constricta Δ5 

Fad_a, Δ5 Fad_b and Δ6 Fad (bold fonts) with Δ4, 5, 6, 8 Fad proteins from 

representative mammals, fish, marine molluscs and other lower eukaryotes. The tree 

was constructed using the maximum-likelihood approach with MEGA 7. The horizontal 

branch length is proportional to aa substitution rate per site. The numbers represent the 

frequencies with which the tree topology presented was replicated after 1,000 iterations. 

An asterisk indicates the Fad genes of A. californica, C. gigas, C. virginica, L. gigantea, 

M. yessoensis and O. bimaculoides that have not been functionally characterized but 

their complete genomes are currently available (Table S2). 




