1,965 research outputs found
Papel do ferro no mecanismo fungicida mediado pelo óxido nítrico de macrófagos murinos ativados com IFN-gama contra conídias do Paracoccidioides brasiliensis
Iron is an essential growth element of virtually all microorganisms and its restriction is one of the mechanisms used by macrophages to control microbial multiplication. Paracoccidioides brasiliensis, the agent of paracoccidioidomycosis, an important systemic mycosis in Latin America, is inhibited in its conidia-to-yeast conversion in the absence of iron. We studied the participation of iron in the nitric oxide (NO)-mediated fungicidal mechanism against conidia. Peritoneal murine macrophages activated with 50U/mL of IFN-gamma or treated with 35 µM Deferoxamine (DEX) and infected with P. brasiliensis conidia, were co-cultured and incubated for 96 h in the presence of different concentrations of holotransferrin (HOLO) and FeS0(4). The supernatants were withdrawn in order to assess NO2 production by the Griess method. The monolayers were fixed, stained and observed microscopically. The percentage of the conidia-to-yeast transition was estimated by counting 200 intracellular propagules. IFN-gamma-activated or DEX-treated Mthetas presented marked inhibition of the conidia-to-yeast conversion (19 and 56%, respectively) in comparison with non-activated or untreated Mthetas (80%). IFN-gamma-activated macrophages produced high NO levels in comparison with the controls. Additionally, when the activated or treated-macrophages were supplemented with iron donors (HOLO or FeSO4), the inhibitory action was reversed, although NO production remained intact. These results suggest that the NO-mediated fungicidal mechanism exerted by IFN-gamma-activated macrophages against P. brasiliensis conidia, is dependent of an iron interaction.O ferro é elemento essencial para o crescimento de microrganismos e sua limitação é um dos mecanismos usados por macrófagos para controlar a multiplicação microbiana. Paracoccidioides brasiliensis, o agente da paracoccidioidomicose, uma das micoses sistêmicas mais importantes na América Latina, é inibido em sua conversão de conídia-à-levedura na ausência do ferro. Estudamos a participação do ferro no mecanismo fungicida mediado pelo óxido nítrico (NO) na sua interação com as conídias do fungo. Macrófagos peritoneais murinos ativados com 50U/mL de IFN-gama ou tratados com 35 µM Deferoxamina (DEX) e infectados com conídias do P. brasiliensis foram co-cultivados e incubados por 96 h na presença de concentrações diferentes de holotransferrina (HOLO) e FeS0(4). Os sobrenadantes foram retirados a fim de avaliar a produção de NO2 pelo método de Griess. Os macrófagos eram fixados, corados e observados ao microscópio. A porcentagem da transição de conídia-à-levedura foi estimada contando 200 propágulos intracelulares. Os macrófagos ativados com citocina ou tratados com DEX apresentaram inibição marcada da conversão de conídia-à-levedura (19 e 56%, respectivamente) em comparação com macrófagos controle (80%). Os macrófagos ativados com IFN-gama produziram elevação nos níveis de NO em comparação com macrófagos não-tratados ou não-activados. Adicionalmente, quando as monocapas ativadas ou tratadas foram suplementadas com doadores do ferro (HOLO ou FeSO4), a ação inibitória foi revertida embora a produção de NO permanecesse intacto. Estes resultados sugerem que o mecanismo fungicida mediado pelo NO exercido por macrófagos ativados com IFN-gama contra conídias do P. brasiliensis é dependente de uma interação do ferro
Impact of Perineuronal Net Removal in the Rat Medial Prefrontal Cortex on Parvalbumin Interneurons After Reinstatement of Cocaine Conditioned Place Preference
Parvalbumin (PV)-positive cells are GABAergic fast-spiking interneurons that modulate the activity of pyramidal neurons in the medial prefrontal cortex (mPFC) and their output to brain areas associated with learning and memory. The majority of PV cells within the mPFC are surrounded by a specialized extracellular matrix structure called the perineuronal net (PNN). We have shown that removal of PNNs with the enzyme chondroitinase-ABC (Ch-ABC) in the mPFC prevents the consolidation and reconsolidation of cocaine-associated conditioned place preference (CPP) memories. Here we examined the extent to which retrieval of a CPP memory during cocaine-primed reinstatement altered the levels and function of PV neurons and their surrounding PNNs during the reconsolidation period. We further determined the extent to which PNN removal prior to reinstatement altered PV intensity levels and PV cell function. Male Sprague-Dawley rats were trained for cocaine-induced conditioned place preference (CPP) followed by extinction training, microinjection of Ch-ABC in the prelimbic PFC, and cocaine-induced reinstatement. Rats were sacrificed immediately prior to reinstatement or at 2 h, 6 h, or 48 h after reinstatement for immunohistochemistry or 2 h later for electrophysiology. Our findings indicate that PNN removal only partially diminished reinstatement. Cocaine-primed reinstatement produced only minor changes in PNN or PV intensity in vehicle controls. However, after PNN removal, the intensity of remaining PNN-surrounded PV cells was decreased at all times except at 2 h post-reinstatement, at which time cocaine increased PV intensity. Consistent with this, in vehicle controls, PV neurons naturally devoid of PNNs showed a similar pattern to Ch-ABC-treated rats prior to and after cocaine reinstatement, suggesting a protective effect of PNNs on cocaine-induced changes in PV intensity. Using whole-cell patch-clamp, cocaine-primed reinstatement in Ch-ABC-treated rats decreased the number of elicited action potentials but increased excitatory synaptic transmission, which may have been compensatory. These findings suggest that without PNNs, cocaine-induced reinstatement produces rapid changes in PV intensity and PV cell excitability, which may in turn regulate output of the mPFC post-memory retrieval and diminish the maintenance of cocaine memory during reconsolidation
Eukaryotic elongation factor 2 controls TNF-alpha translation in LPS-induced hepatitis
Bacterial LPS (endotoxin) has been implicated in the pathogenesis of acute liver disease through its induction of the proinflammatory cytokine TNF-alpha. TNF-alpha is a key determinant of the outcome in a well-established mouse model of acute liver failure during septic shock. One possible mechanism for regulating TNF-alpha expression is through the control of protein elongation during translation, which would allow rapid cell adaptation to physiological changes. However, the regulation of translational elongation is poorly understood. We found that expression of p38gamma/delta MAPK proteins is required for the elongation of nascent TNF-alpha protein in macrophages. The MKK3/6-p38gamma/delta pathway mediated an inhibitory phosphorylation of eukaryotic elongation factor 2 (eEF2) kinase, which in turn promoted eEF2 activation (dephosphorylation) and subsequent TNF-alpha elongation. These results identify a new signaling pathway that regulates TNF-alpha production in LPS-induced liver damage and suggest potential cell-specific therapeutic targets for liver diseases in which TNF-alpha production is involved
High resolution and dynamic imaging of biopersistence and bioreactivity of extra and intracellular MWNTs exposed to microglial cells
Multi-walled carbon nanotubes (MWNTs) are increasingly being developed both as neuro-therapeutic drug delivery systems to the brain and as neural scaffolds to drive tissue regeneration across lesion sites. MWNTs with different degrees of acid oxidation may have different bioreactivities and propensities to aggregate in the extracellular environment, and both individualised and aggregated MWNTs may be expected to be found in the brain. Before practical application, it is vital to understand how both aggregates and individual MWNTs will interact with local phagocytic immune cells, the microglia, and ultimately to determine their biopersistence in the brain. The processing of extra- and intracellular MWNTs (both pristine and when acid oxidised) by microglia was characterised across multiple length scales by correlating a range of dynamic, quantitative and multi-scale techniques, including: UV-vis spectroscopy, light microscopy, focussed ion beam scanning electron microscopy and transmission electron microscopy. Dynamic, live cell imaging revealed the ability of microglia to break apart and internalise micron-sized extracellular agglomerates of acid oxidised MWNTs, but not pristine MWNTs. The total amount of MWNTs internalised by, or strongly bound to, microglia was quantified as a function of time. Neither the significant uptake of oxidised MWNTs, nor the incomplete uptake of pristine MWNTs affected microglial viability, pro-inflammatory cytokine release or nitric oxide production. However, after 24 h exposure to pristine MWNTs, a significant increase in the production of reactive oxygen species was observed. Small aggregates and individualised oxidised MWNTs were present in the cytoplasm and vesicles, including within multilaminar bodies, after 72 h. Some evidence of morphological damage to oxidised MWNT structure was observed including highly disordered graphitic structures, suggesting possible biodegradation. This work demonstrates the utility of dynamic, quantitative and multi-scale techniques in understanding the different cellular processing routes of functionalised nanomaterials. This correlative approach has wide implications for assessing the biopersistence of MWNT aggregates elsewhere in the body, in particular their interaction with macrophages in the lung
Communication about sex and HPV among Puerto Rican mothers and daughters
OBJECTIVE: Although opportunities to vaccinate against human papillomavirus (HPV) are available, vaccination rates in Puerto Rico remain low. Communication between parents and adolescents about sexual topics may influence decisions about HPV vaccination uptake, particularly among young women; yet, few studies have addressed this issue. This qualitative study explored Puerto Rican mothers' and daughters' communication on sex-related topics, and HPV, including the HPV vaccine.
DESIGN: Thirty participants, including 9 mothers and 21 daughters, participated in seven focus groups. Participants were divided into groups of mothers and daughters, and further stratified by vaccination status. Transcripts were analyzed using a modified grounded theory approach to identify emergent themes.
RESULTS: Focus group data revealed four main themes: (1) limited parent-daughter communication about sex-related topics; (2) daughters' discomfort discussing sex-related topics with their parents; (3) parental focus on abstinence; and, (4) limited parent-daughter communication about HPV and the HPV vaccine.
CONCLUSION: Although daughters in this study struggled with feelings of embarrassment, invasion of privacy, encouragement of abstinence, and the fear of parents' reaction to them being sexually active prior to marriage, they also recognized the need to increase the parent-daughter communication about sex-related topics including HPV and the HPV vaccine. Educational efforts should target both daughters and parents to increase communication skills and self-efficacy and to enable them to discuss sexual health in open and nonjudgmental conversations
Gender Differences in Compensation, Job Satisfaction and Other Practice Patterns in Urology
The proportion of women in urology has increased from <0.5% in 1981 to 10% today. Furthermore, 33% of students matching in urology are now female. This analysis sought to characterize the female workforce in urology in comparison to men with regard to income, workload, and job satisfaction
Host proteostasis modulates influenza evolution
Predicting and constraining RNA virus evolution require understanding the molecular factors that define the mutational landscape accessible to these pathogens. RNA viruses typically have high mutation rates, resulting in frequent production of protein variants with compromised biophysical properties. Their evolution is necessarily constrained by the consequent challenge to protein folding and function. We hypothesized that host proteostasis mechanisms may be significant determinants of the fitness of viral protein variants, serving as a critical force shaping viral evolution. Here, we test that hypothesis by propagating influenza in host cells displaying chemically-controlled, divergent proteostasis environments. We find that both the nature of selection on the influenza genome and the accessibility of specific mutational trajectories are significantly impacted by host proteostasis. These findings provide new insights into features of host-pathogen interactions that shape viral evolution, and into the potential design of host proteostasis-targeted antiviral therapeutics that are refractory to resistance.National Institutes of Health (U.S.) (Award 1DP2GM119162)National Institutes of Health (U.S.) (Grant P30-ES002109
Records of Olive Ridley Marine Turtles (Lepidochelys olivacea Eschscholtz 1829) in Venezuelan Waters: A Review of Historical Data Sets and Threats
We assess all the records of olive ridley turtles (Lepidochelys olivacea) in an exhaustive review of multiple data sources between 1977 and 2018 in Venezuela. We compiled 35 records of olive ridleys in the country. Our findings confirm the almost year-round presence of this species in Venezuelan waters
Human adaptations to multiday saturation on NASA NEEMO
Human adaptation to extreme environments has been explored for over a century to understand human psychology, integrated physiology, comparative pathologies, and exploratory potential. It has been demonstrated that these environments can provide multiple external stimuli and stressors, which are sufficient to disrupt internal homeostasis and induce adaptation processes. Multiday hyperbaric and/or saturated (HBS) environments represent the most understudied of environmental extremes due to inherent experimental, analytical, technical, temporal, and safety limitations. National Aeronautic Space Agency (NASA) Extreme Environment Mission Operation (NEEMO) is a space-flight analog mission conducted within Florida International University's Aquarius Undersea Research Laboratory (AURL), the only existing operational and habitable undersea saturated environment. To investigate human objective and subjective adaptations to multiday HBS, we evaluated aquanauts living at saturation for 9-10 days via NASA NEEMO 22 and 23, across psychologic, cardiac, respiratory, autonomic, thermic, hemodynamic, sleep, and body composition parameters. We found that aquanauts exposed to saturation over 9-10 days experienced intrapersonal physical and mental burden, sustained good mood and work satisfaction, decreased heart and respiratory rates, increased parasympathetic and reduced sympathetic modulation, lower cerebral blood flow velocity, intact cerebral autoregulation and maintenance of baroreflex functionality, as well as losses in systemic bodyweight and adipose tissue. Together, these findings illustrate novel insights into human adaptation across multiple body systems in response to multiday hyperbaric saturation
Measurement of H<sub>2</sub>O<sub>2</sub> within living drosophila during aging using a ratiometric mass spectrometry probe targeted to the mitochondrial matrix
Hydrogen peroxide (H<sub>2</sub>O<sub>2</sub>) is central to mitochondrial oxidative damage and redox signaling, but its roles are poorly understood due to the difficulty of measuring mitochondrial H<sub>2</sub>O<sub>2</sub> in vivo. Here we report a ratiometric mass spectrometry probe approach to assess mitochondrial matrix H<sub>2</sub>O<sub>2</sub> levels in vivo. The probe, MitoB, comprises a triphenylphosphonium (TPP) cation driving its accumulation within mitochondria, conjugated to an arylboronic acid that reacts with H<sub>2</sub>O<sub>2</sub> to form a phenol, MitoP. Quantifying the MitoP/MitoB ratio by liquid chromatography-tandem mass spectrometry enabled measurement of a weighted average of mitochondrial H<sub>2</sub>O<sub>2</sub> that predominantly reports on thoracic muscle mitochondria within living flies. There was an increase in mitochondrial H<sub>2</sub>O<sub>2</sub> with age in flies, which was not coordinately altered by interventions that modulated life span. Our findings provide approaches to investigate mitochondrial ROS in vivo and suggest that while an increase in overall mitochondrial H<sub>2</sub>O<sub>2</sub> correlates with aging, it may not be causative
- …