3,392 research outputs found

    Throughput Maximization in Multiprocessor Speed-Scaling

    Full text link
    We are given a set of nn jobs that have to be executed on a set of mm speed-scalable machines that can vary their speeds dynamically using the energy model introduced in [Yao et al., FOCS'95]. Every job jj is characterized by its release date rjr_j, its deadline djd_j, its processing volume pi,jp_{i,j} if jj is executed on machine ii and its weight wjw_j. We are also given a budget of energy EE and our objective is to maximize the weighted throughput, i.e. the total weight of jobs that are completed between their respective release dates and deadlines. We propose a polynomial-time approximation algorithm where the preemption of the jobs is allowed but not their migration. Our algorithm uses a primal-dual approach on a linearized version of a convex program with linear constraints. Furthermore, we present two optimal algorithms for the non-preemptive case where the number of machines is bounded by a fixed constant. More specifically, we consider: {\em (a)} the case of identical processing volumes, i.e. pi,j=pp_{i,j}=p for every ii and jj, for which we present a polynomial-time algorithm for the unweighted version, which becomes a pseudopolynomial-time algorithm for the weighted throughput version, and {\em (b)} the case of agreeable instances, i.e. for which rirjr_i \le r_j if and only if didjd_i \le d_j, for which we present a pseudopolynomial-time algorithm. Both algorithms are based on a discretization of the problem and the use of dynamic programming

    The free energy in a class of quantum spin systems and interchange processes

    Full text link
    We study a class of quantum spin systems in the mean-field setting of the complete graph. For spin S=12S=\tfrac12 the model is the Heisenberg ferromagnet, for general spin S12NS\in\tfrac12\mathbb{N} it has a probabilistic representation as a cycle-weighted interchange process. We determine the free energy and the critical temperature (recovering results by T\'oth and by Penrose when S=12S=\tfrac12). The critical temperature is shown to coincide (as a function of SS) with that of the q=2S+1q=2S+1 state classical Potts model, and the phase transition is discontinuous when S1S\geq1.Comment: 22 page

    First-Principle Description of Correlation Effects in Layered Materials

    Get PDF
    We present a first-principles description of anisotropic materials characterized by having both weak (dispersion-like) and strong covalent bonds, based on the Adiabatic--Connection Fluctuation--Dissipation Theorem within Density Functional Theory. For hexagonal boron nitride the in-plane and out of plane bonding as well as vibrational dynamics are well described both at equilibrium and when the layers are pulled apart. Also bonding in covalent and ionic solids is described. The formalism allows to ping-down the deficiencies of common exchange-correlation functionals and provides insight towards the inclusion of dispersion interactions into the correlation functional.Comment: Accepted for publication in Physical Review Letter

    Obtaining efficient collisional engines via velocity dependent drivings

    Full text link
    Brownian particles interacting sequentially with distinct temperatures and driving forces at each stroke have been tackled as a reliable alternative for the construction of engine setups. However they can behave very inefficiently depending on the driving used for the worksource and/or when temperatures of each stage are very different from each other. Inspired by some models for molecular motors and recent experimental studies, a coupling between driving and velocities is introduced as an alternative ingredient for enhancing the system performance. Here, the role of this new ingredient for levering the engine performance is detailed investigated from stochastic thermodynamics. Exact expressions for quantities and distinct maximization routes have been obtained and investigated. The search of an optimal coupling provides a substantial increase of engine performance (mainly efficiency), even for large ΔT\Delta T. A simple and general argument for the optimal coupling can be estimated, irrespective the driving and other model details.Comment: 10 pages, 8 figures, comments are welcom

    Critical phase in non-conserving zero-range processes and equilibrium networks

    Full text link
    Zero-range processes, in which particles hop between sites on a lattice, are closely related to equilibrium networks, in which rewiring of links take place. Both systems exhibit a condensation transition for appropriate choices of the dynamical rules. The transition results in a macroscopically occupied site for zero-range processes and a macroscopically connected node for networks. Criticality, characterized by a scale-free distribution, is obtained only at the transition point. This is in contrast with the widespread scale-free real-life networks. Here we propose a generalization of these models whereby criticality is obtained throughout an entire phase, and the scale-free distribution does not depend on any fine-tuned parameter.Comment: 4 pages, 4 figure

    Improving the Price of Anarchy for Selfish Routing via Coordination Mechanisms

    Get PDF
    We reconsider the well-studied Selfish Routing game with affine latency functions. The Price of Anarchy for this class of games takes maximum value 4/3; this maximum is attained already for a simple network of two parallel links, known as Pigou's network. We improve upon the value 4/3 by means of Coordination Mechanisms. We increase the latency functions of the edges in the network, i.e., if e(x)\ell_e(x) is the latency function of an edge ee, we replace it by ^e(x)\hat{\ell}_e(x) with e(x)^e(x)\ell_e(x) \le \hat{\ell}_e(x) for all xx. Then an adversary fixes a demand rate as input. The engineered Price of Anarchy of the mechanism is defined as the worst-case ratio of the Nash social cost in the modified network over the optimal social cost in the original network. Formally, if \CM(r) denotes the cost of the worst Nash flow in the modified network for rate rr and \Copt(r) denotes the cost of the optimal flow in the original network for the same rate then [\ePoA = \max_{r \ge 0} \frac{\CM(r)}{\Copt(r)}.] We first exhibit a simple coordination mechanism that achieves for any network of parallel links an engineered Price of Anarchy strictly less than 4/3. For the case of two parallel links our basic mechanism gives 5/4 = 1.25. Then, for the case of two parallel links, we describe an optimal mechanism; its engineered Price of Anarchy lies between 1.191 and 1.192.Comment: 17 pages, 2 figures, preliminary version appeared at ESA 201

    Electron dynamics in intentionally disordered semiconductor superlattices

    Get PDF
    We study the dynamical behavior of disordered quantum-well-based semiconductor superlattices where the disorder is intentional and short-range correlated. We show that, whereas the transmission time of a particle grows exponentially with the number of wells in an usual disordered superlattice for any value of the incident particle energy, for specific values of the incident energy this time increases linearly when correlated disorder is included. As expected, those values of the energy coincide with a narrow subband of extended states predicted by the static calculations of Dom\'{\i}nguez-Adame {\em et al.} [Phys. Rev. B {\bf 51}, 14 ,359 (1994)]; such states are seen in our dynamical results to exhibit a ballistic regime, very close to the WKB approximation of a perfect superlattice. Fourier transform of the output signal for an incident Gaussian wave packet reveals a dramatic filtering of the original signal, which makes us confident that devices based on this property may be designed and used for nanotechnological applications. This is more so in view of the possibility of controllingthe outp ut band using a dc electric field, which we also discuss. In the conclusion we summarize our results and present an outlook for future developments arising from this work.Comment: 10 pagex, RevTex, 13 Postscript figures. Physical Review B (in press

    A note on the existence of standard splittings for conformally stationary spacetimes

    Full text link
    Let (M,g)(M,g) be a spacetime which admits a complete timelike conformal Killing vector field KK. We prove that (M,g)(M,g) splits globally as a standard conformastationary spacetime with respect to KK if and only if (M,g)(M,g) is distinguishing (and, thus causally continuous). Causal but non-distinguishing spacetimes with complete stationary vector fields are also exhibited. For the proof, the recently solved "folk problems" on smoothability of time functions (moreover, the existence of a {\em temporal} function) are used.Comment: Metadata updated, 6 page

    Acceptability and facilitators of and barriers to point-of-care HIV testing in a homeless-focused service in Gloucestershire: a qualitative evaluation

    Get PDF
    Objectives: Late HIV diagnosis increases the risks of onward transmission, morbidity and mortality. Rapid point-of-care testing (POCT) reaches people who have never been tested and people living with HIV who are undiagnosed. This study explored the acceptability and feasibility of HIV POCT from the perspectives of service providers and users. // Methods: A pilot study introduced HIV POCT to one service in Gloucestershire, England. Eleven semi-structured interviews with service users and a focus group with three service providers were conducted. The Theoretical Framework of Acceptability and the Theoretical Domains Framework were used to design the topic guide and analysis. // Results: Acceptability of HIV POCT was high. Seven facilitators were identified (e.g. understanding the test purpose and process), alongside two potential barriers, one relevant to service providers and users (anxiety) and the other to service users (stigma). // Conclusions: To maximize the benefits of implementation of HIV POCT, health care providers require appropriate training and supervision to offer and administer POCT

    Effective field theory and dispersion law of the phonons of a non-relativistic superfluid

    Full text link
    We study the recently proposed effective field theory for the phonon of an arbitrary non-relativistic superfluid. After computing the one-loop phonon self-energy, we obtain the low temperature T contributions to the phonon dispersion law at low momentum, and see that the real part of those can be parametrized as a thermal correction to the phonon velocity. Because the phonons are the quanta of the sound waves, at low momentum their velocity should agree with the speed of sound. We find that our results match at order T^4ln(T) with those predicted by Andreev and Khalatnikov for the speed of sound, derived from the superfluid hydrodynamical equations and the phonon kinetic theory. We get also higher order corrections of order T^4, which are not reproduced pushing naively the kinetic theory computation. Finally, as an application, we consider the cold Fermi gas in the unitarity limit, and find a universal expression for the low T relative correction to the speed of sound for these systems.Comment: 14 pages, 2 figures. References adde
    corecore