407 research outputs found

    Probing Nuclear forces beyond the drip-line using the mirror nuclei 16^{16}N and 16^{16}F

    Get PDF
    Radioactive beams of 14^{14}O and 15^{15}O were used to populate the resonant states 1/2+^+, 5/2+^+ and 0−,1−,2−0^-,1^-,2^- in the unbound 15^{15}F and 16^{16}F nuclei respectively by means of proton elastic scattering reactions in inverse kinematics. Based on their large proton spectroscopic factor values, the resonant states in 16^{16}F can be viewed as a core of 14^{14}O plus a proton in the 2s1/2_{1/2} or 1d5/2_{5/2} shell and a neutron in 1p1/2_{1/2}. Experimental energies were used to derive the strength of the 2s1/2_{1/2}-1p1/2_{1/2} and 1d5/2_{5/2}-1p1/2_{1/2} proton-neutron interactions. It is found that the former changes by 40% compared with the mirror nucleus 16^{16}N, and the second by 10%. This apparent symmetry breaking of the nuclear force between mirror nuclei finds explanation in the role of the large coupling to the continuum for the states built on an ℓ=0\ell=0 proton configuration.Comment: 6 pages, 3 figures, 2 tables, accepted for publication as a regular article in Physical Review

    Prolate-Spherical Shape Coexistence at N=28 in 44^{44}S

    Get PDF
    The structure of 44^{44}S has been studied using delayed Îł\gamma and electron spectroscopy at \textsc{ganil}. The decay rates of the 02+^+_2 isomeric state to the 21+^+_1 and 01+^+_1 states have been measured for the first time, leading to a reduced transition probability B(E2~:~21+^{+}_1→\rightarrow02+)^{+}_2)= 8.4(26)~e2^2fm4^4 and a monopole strength ρ2\rho^2(E0~:~02+^{+}_2→\rightarrow01+)^{+}_1) =~8.7(7)×\times10−3^{-3}. Comparisons to shell model calculations point towards prolate-spherical shape coexistence and a phenomenological two level mixing model is used to extract a weak mixing between the two configurations.Comment: 5 pages, 3 figures, accepted for publication in Physical Review Letter

    New pathway to bypass the 15O waiting point

    Full text link
    We propose the sequential reaction process 15^{15}O(pp,Îł)(ÎČ+\gamma)(\beta^{+})16^{16}O as a new pathway to bypass of the 15^{15}O waiting point. This exotic reaction is found to have a surprisingly high cross section, approximately 1010^{10} times higher than the 15^{15}O(pp,ÎČ+\beta^{+})16^{16}O. These cross sections were calculated after precise measurements of energies and widths of the proton-unbound 16^{16}F low lying states, obtained using the H(15^{15}O,p)15^{15}O reaction. The large (p,Îł)(ÎČ+)(p,\gamma)(\beta^{+}) cross section can be understood to arise from the more efficient feeding of the low energy wing of the ground state resonance by the gamma decay. The implications of the new reaction in novae explosions and X-ray bursts are discussed.Comment: submitte

    Structure of 13^{13}Be probed via secondary beam reactions

    Full text link
    The low-lying level structure of the unbound neutron-rich nucleus 13^{13}Be has been investigated via breakup on a carbon target of secondary beams of 14,15^{14,15}B at 35 MeV/nucleon. The coincident detection of the beam velocity 12^{12}Be fragments and neutrons permitted the invariant mass of the 12^{12}Be+nn and 12^{12}Be+nn+nn systems to be reconstructed. In the case of the breakup of 15^{15}B, a very narrow structure at threshold was observed in the 12^{12}Be+nn channel. Contrary to earlier stable beam fragmentation studies which identified this as a strongly interacting ss-wave virtual state in 13^{13}Be, analysis here of the 12^{12}Be+nn+nn events demonstrated that this was an artifact resulting from the sequential-decay of the 14^{14}Be(2+^+) state. Single-proton removal from 14^{14}B was found to populate a broad low-lying structure some 0.70 MeV above the neutron-decay threshold in addition to a less prominent feature at around 2.4 MeV. Based on the selectivity of the reaction and a comparison with (0-3)ℏω\hbar\omega shell-model calculations, the low-lying structure is concluded to most probably arise from closely spaced Jπ^\pi=1/2+^+ and 5/2+^+ resonances (Er_r=0.40±\pm0.03 and 0.85−0.11+0.15^{+0.15}_{-0.11} MeV), whilst the broad higher-lying feature is a second 5/2+^+ level (Er_r=2.35±\pm0.14 MeV). Taken in conjunction with earlier studies, it would appear that the lowest 1/2+^+ and 1/2−^- levels lie relatively close together below 1 MeV.Comment: 14 pages, 13 figures, 2 tables. Accepted for publication in Physical Review

    Decorated networks of native proteins:nanomaterials with tunable mesoscopic domain size

    Get PDF
    Natural and artificial proteins with designer properties and functionalities offer unparalleled opportunity for functional nanoarchitectures formed through self-assembly. However, to exploit this potential we need to design the system such that assembly results in desired architecture forms while avoiding denaturation and therefore retaining protein functionality. Here we address this challenge with a model system of fluorescent proteins. By manipulating self-assembly using techniques inspired by soft matter where interactions between the components are controlled to yield the desired structure, we have developed a methodology to assemble networks of proteins of one species which we can decorate with another, whose coverage we can tune. Consequently, the interfaces between domains of each component can also be tuned, with potential applications for example in energy - or electron - transfer. Our model system of eGFP and mCherry with tuneable interactions reveals control over domain sizes in the resulting networks

    Deep-ocean mixing driven by small-scale internal tides

    Get PDF
    Turbulent mixing in the ocean is key to regulate the transport of heat, freshwater and biogeochemical tracers, with strong implications for Earth’s climate. In the deep ocean, tides supply much of the mechanical energy required to sustain mixing via the generation of internal waves, known as internal tides, whose fate—the relative importance of their local versus remote breaking into turbulence—remains uncertain. Here, we combine a semi-analytical model of internal tide generation with satellite and in situ measurements to show that from an energetic viewpoint, small-scale internal tides, hitherto overlooked, account for the bulk (>50%) of global internal tide generation, breaking and mixing. Furthermore, we unveil the pronounced geographical variations of their energy proportion, ignored by current parameterisations of mixing in climate-scale models. Based on these results, we propose a physically consistent, observationally supported approach to accurately represent the dissipation of small-scale internal tides and their induced mixing in climate-scale models

    Comparison of two analysis methods for nuclear reaction measurements of 12C +12C interactions at 95 MeV/u for hadrontherapy

    Get PDF
    During therapeutic treatment with heavier ions like carbon, the beam undergoes nuclear fragmentation and secondary light charged particles, in particular protons and alpha particles, are produced. To estimate the dose deposited into the tumors and the surrounding healthy tissues, the accuracy must be higher than (±\pm3% and±\pm1 mm). Therefore, measurements are performed to determine the double differential cross section for different reactions. In this paper, the analysis of data from 12C +12C reactions at 95 MeV/u are presented. The emitted particles are detected with \DeltaEthin-\DeltaEthick-E telescopes made of a stack of two silicon detectors and a CsI crystal. Two different methods are used to identify the particles. One is based on graphical cuts onto the \DeltaE-E maps, the second is based on the so-called KaliVeda method using a functional description of \DeltaE versus E. The results of the two methods will be presented in this paper as well as the comparison between both

    Collapse of the N=28 shell closure in 42^{42}Si

    Get PDF
    The energies of the excited states in very neutron-rich 42^{42}Si and 41,43^{41,43}P have been measured using in-beam Îł\gamma-ray spectroscopy from the fragmentation of secondary beams of 42,44^{42,44}S at 39 A.MeV. The low 2+^+ energy of 42^{42}Si, 770(19) keV, together with the level schemes of 41,43^{41,43}P provide evidence for the disappearance of the Z=14 and N=28 spherical shell closures, which is ascribed mainly to the action of proton-neutron tensor forces. New shell model calculations indicate that 42^{42}Si is best described as a well deformed oblate rotor.Comment: 4 pages, 3 figures, accepted for publication in Phys. Rev. let

    One-neutron removal reactions on light neutron-rich nuclei

    Full text link
    A study of high energy (43--68 MeV/nucleon) one-neutron removal reactions on a range of neutron-rich psd-shell nuclei (Z = 5--9, A = 12--25) has been undertaken. The inclusive longitudinal and transverse momentum distributions for the core fragments, together with the cross sections have been measured for breakup on a carbon target. Momentum distributions for reactions on tantalum were also measured for a subset of nuclei. An extended version of the Glauber model incorporating second order noneikonal corrections to the JLM parametrisation of the optical potential has been used to describe the nuclear breakup, whilst the Coulomb dissociation is treated within first order perturbation theory. The projectile structure has been taken into account via shell model calculations employing the psd-interaction of Warburton and Brown. Both the longitudinal and transverse momentum distributions, together with the integrated cross sections were well reproduced by these calculations and spin-parity assignments are thus proposed for 15^{15}B, 17^{17}C, 19−21^{19-21}N, 21,23^{21,23}O, 23−25^{23-25}F. In addition to the large spectroscopic amplitudes for the Îœ2\nu2s1/2_{1/2} intruder configuration in the N=9 isotones,14^{14}B and 15^{15}C, significant Îœ2\nu2s1/22_{1/2}^2 admixtures appear to occur in the ground state of the neighbouring N=10 nuclei 15^{15}B and 16^{16}C. Similarly, crossing the N=14 subshell, the occupation of the Îœ2\nu2s1/2_{1/2} orbital is observed for 23^{23}O, 24,25^{24,25}F. Analysis of the longitudinal and transverse momentum distributions reveals that both carry spectroscopic information, often of a complementary nature. The general utility of high energy nucleon removal reactions as a spectroscopic tool is also examined.Comment: 50 pages, 19 figures, submitted to Phys. Rev.

    Elliptic flow in heavy ion collisions near the balance energy

    Get PDF
    The proton elliptic flow in collisions of Ca on Ca at energies from 30 to 100 MeV/nucleon is studied in an isospin-dependent transport model. With increasing incident energy, the elliptic flow shows a transition from positive to negative flow. Its magnitude depends on both the nuclear equation of state (EOS) and the nucleon-nucleon scattering cross section. Different elliptic flows are obtained for a stiff EOS with free nucleon-nucleon cross sections and a soft EOS with reduced nucleon-nucleon cross sections, although both lead to vanishing in-plane transverse flow at the same balance energy. The study of both in-plane and elliptic flows at intermediate energies thus provides a means to extract simultaneously the information on the nuclear equation of state and the nucleon-nucleon scattering cross section in medium.Comment: 6 pages, 2 figure
    • 

    corecore