985 research outputs found

    Values and Attitude Change

    Get PDF
    The amount of time it takes for an attitude to be expressed (i.e., accessibility) is one of the most basic structural properties of an attitude and an important factor to consider in attitude strength (e.g., attitude extremity). Despite its importance, relatively little work has examined the role of accessibility in an inter-attitudinal context, particularly as it relates to the strength of related attitudes in the network. The present research examined the role of accessibility of an individual’s political ideology (i.e., beliefs about how liberal or conservative one is) may polarize an attitude associated with their political ideology (i.e., gun control laws). The study utilized a repeated expression paradigm to manipulate accessibility of one’s ideology, such that participants expressed their political ideology either once (the single expression condition) or eight times (the repeated expression condition). Participants then reported their attitudes toward gun control laws prior and after writing their thoughts about their attitude. As expected, participants in the repeated expression condition a) had more polarized attitudes toward gun control laws and b) reported that their thoughts reflected their political ideology more than in the single expression condition. Implications for the role of accessibility in inter-attitudinal strength are discussed

    Energy-efficient through-life smart design, manufacturing and operation of ships in an industry 4.0 environment

    Get PDF
    Energy efficiency is an important factor in the marine industry to help reduce manufacturing and operational costs as well as the impact on the environment. In the face of global competition and cost-effectiveness, ship builders and operators today require a major overhaul in the entire ship design, manufacturing and operation process to achieve these goals. This paper highlights smart design, manufacturing and operation as the way forward in an industry 4.0 (i4) era from designing for better energy efficiency to more intelligent ships and smart operation through-life. The paper (i) draws parallels between ship design, manufacturing and operation processes, (ii) identifies key challenges facing such a temporal (lifecycle) as opposed to spatial (mass) products, (iii) proposes a closed-loop ship lifecycle framework and (iv) outlines potential future directions in smart design, manufacturing and operation of ships in an industry 4.0 value chain so as to achieve more energy-efficient vessels. Through computational intelligence and cyber-physical integration, we envision that industry 4.0 can revolutionise ship design, manufacturing and operations in a smart product through-life process in the near future

    Technological Frames and End-User Computing

    Get PDF
    Research Paper Series (National University of Singapore. Faculty of Business Administration); 1996-0041-2

    Design of Polyurethane Fibers: Relation between the Spinning Technique and the Resulting Fiber Topology

    Get PDF
    International audienc

    Evolutionary Computation Automated Design of Ship Hull Forms for the Industry 4.0 Era

    Get PDF
    As the marine industry moves towards the industry 4.0 era, the role of automated smart design is becoming increasingly significant. This offers an ability to produce highly customisable design and to integrate with the product-lifecycle process such as digitalised ship production and ship operations to in an efficient process. Currently, the hull form optimisation process is performed manually using `trial-and-error' approach, which is not efficient. Focusing on automated smart design, this paper introduces a hybrid evolutionary algorithm and morphing (HEAM). It works by mapping the entire hull form (phenotype) into a chromosome (genotype), which allows global shape modification using a novel 2D morphing method. By combining this 2D morphing and Genetic Algorithm (GA), it enables optimal hull designs to be produced more rapidly with no user intervention

    Plasma Metabolomic Changes following PI3K Inhibition as Pharmacodynamic Biomarkers: Preclinical Discovery to Phase I Trial Evaluation.

    Get PDF
    PI3K plays a key role in cellular metabolism and cancer. Using a mass spectrometry-based metabolomics platform, we discovered that plasma concentrations of 26 metabolites, including amino acids, acylcarnitines, and phosphatidylcholines, were decreased in mice bearing PTEN-deficient tumors compared with non-tumor-bearing controls and in addition were increased following dosing with class I PI3K inhibitor pictilisib (GDC-0941). These candidate metabolomics biomarkers were evaluated in a phase I dose-escalation clinical trial of pictilisib. Time- and dose-dependent effects were observed in patients for 22 plasma metabolites. The changes exceeded baseline variability, resolved after drug washout, and were recapitulated on continuous dosing. Our study provides a link between modulation of the PI3K pathway and changes in the plasma metabolome and demonstrates that plasma metabolomics is a feasible and promising strategy for biomarker evaluation. Also, our findings provide additional support for an association between insulin resistance, branched-chain amino acids, and related metabolites following PI3K inhibition. Mol Cancer Ther; 15(6); 1412-24. ©2016 AACR.The Institute of Cancer ResearchThis is the author accepted manuscript. The final version is available from the American Association for Cancer Research via http://dx.doi.org/10.1158/1535-7163.MCT-15-081

    A phase I study of afatinib combined with paclitaxel and bevacizumab in patients with advanced solid tumors

    Get PDF
    Purpose The combination of afatinib, an irreversible ErbB family blocker, with paclitaxel and bevacizumab was assessed in patients with advanced solid tumors.Methods This phase I study used a 3 + 3 design to determine the maximum tolerated dose (MTD) of afatinib combined with paclitaxel and bevacizumab. Safety, pharmacokinetics, and anti-tumor activity were also assessed. The starting dose was oral afatinib 40 mg once daily plus intravenous paclitaxel (fixed dose 80 mg/m2, Days 1, 8, and 15 of a 4-week cycle) and intravenous bevacizumab 5 mg/kg every 2 weeks.Results Twenty-nine patients were enroled. The afatinib dose was de-escalated to 30 mg and then 20 mg after 2/6 and 2/5 evaluable patients developed dose-limiting toxicities at 40 and 30 mg, respectively, when combined with paclitaxel and bevacizumab 5 mg/kg. The bevacizumab dose was subsequently escalated to 10 mg/kg, and MTD was defined as afatinib 20 mg plus paclitaxel 80 mg/m2 and bevacizumab 10 mg/kg. Frequent (any grade) treatment-related adverse events (AEs) included diarrhea (83%), rash/acne (83%), fatigue (79%), mucosal inflammation (59%), and nausea (59%). Based on overall safety, bevacizumab was amended to 7.5 mg/kg for the recommended phase II dose. Pharmacokinetic analyses suggested no relevant drug-drug interactions. Three (10%) confirmed partial responses were observed; 15 (52%) patients had stable disease.Conclusions The recommended phase II dose schedule was afatinib 20 mg/day with paclitaxel 80 mg/m2 (Days 1, 8, and 15 every 4 weeks) and bevacizumab 7.5 mg/kg every 2 weeks. At this dose schedule, AEs were manageable, and anti-tumor activity was observed

    Short-term Efficacy of Topical Immunosuppressive Agents on the Survival of Cultivated Allo-Conjunctival Equivalents

    Get PDF
    PURPOSE: To investigate the short-term efficacy of topical immunosuppressive agents on the survival of cultivated allo-conjunctival equivalents. METHODS: Twenty-five eyes of New Zealand white rabbits were included. Temporal conjunctivae were trephined to a diameter of 7.5 mm, and then cultured allo-conjunctival epithelial cells on amniotic membrane were transplanted onto them. Various immunosuppressants including steroid, cyclosporine, and rapamycin were applied topically four times a day for a week. Epithelial defects and graft edema were graded daily. Numbers of inflammatory cells were measured in H&E. PKH26 and cytokeratin 4 and 7 were immunostained. RESULTS: Earlier epithelialization was observed in 1% steroid-treated eyes and defects persisted significantly in 0.5% CsA applied eyes. In histology, PKH26 positive cells considered as donor cells were only found in 1% steroid or 0.01% rapamycin applied eyes. 1% steroid- or 0.01% rapamycin-applied eyes both showed positive staining for keratin-4 and -7. Inflammatory cells were less found in 1% steroid or 0.01% rapamycin treated eyes. CONCLUSIONS: Topical steroid or rapamycin can help to suppress acute inflammation and enhance the acute survival of transplanted conjunctival cells.Y

    Rule-based control studies of LNG-battery hybrid tugboat

    Get PDF
    The use of hybrid energy systems in ships has increased in recent years due to environmental concerns and rising fuel prices. This paper focuses on the development and study of a hybrid energy system using liquefied natural gas (LNG) and batteries for a tugboat. The hybrid system model is created in MATLAB/Simulink® and uses fuel data obtained from an operational diesel-powered tugboat. The LNG–hybrid system is then subjected to testing in four distinct configurations: fixed speed, variable speed, and with and without a battery. The different configurations are compared by computing the daily fuel cost, CO2 emissions, energy efficiency operation indicator () and carbon intensity indicator () ratings in three distinct operation cases. The analysis reveals that the use of an LNG–battery hybrid tugboat results in an average reduction of 67.2% in CO2 emissions and an average decrease of 64.0% in daily fuel cost compared to a diesel system. An energy management system using rule-based (RB) control is incorporated to compare the daily cost and CO2 emissions for one of the case studies. The rule-based control that requires the battery to be used and the LNG engine to be switched off at the lowest allowable minimum power based on the specific gas consumption produces the most cost-effective control strategy out of all the different control strategies tested. The result demonstrates that an additional reduction of CO2 and daily fuel cost for LNG–battery hybrid tugboats by 23.8% and 22.3%, respectively, could be achieved with the implementation of the cost-effective strategy as compared to not having a control strategy

    Investigation of metabolites for estimating blood deposition time

    Get PDF
    This study was supported by a UK Biotechnology and Biological Sciences Research Council (BBSRC) Grant (BB/I019405/1) to DJS, grant 727.011.001 from the Netherlands Organization for Scientific Research (NWO) Forensic Science Program to MK and by Erasmus MC University Medical Centre Rotterdam. DJS is a Royal Society Wolfson Research Merit Award holder. RAH and IH were funded by the Dutch applied research foundation (STW Perspectief Program ‘OnTime’ project 12185).Trace deposition timing reflects a novel concept in forensic molecular biology involving the use of rhythmic biomarkers for estimating the time within a 24-h day/night cycle a human biological sample was left at the crime scene, which in principle allows verifying a sample donor’s alibi. Previously, we introduced two circadian hormones for trace deposition timing and recently demonstrated that messenger RNA (mRNA) biomarkers significantly improve time prediction accuracy. Here, we investigate the suitability of metabolites measured using a targeted metabolomics approach, for trace deposition timing. Analysis of 171 plasma metabolites collected around the clock at 2-h intervals for 36 h from 12 male participants under controlled laboratory conditions identified 56 metabolites showing statistically significant oscillations, with peak times falling into three day/night time categories: morning/noon, afternoon/evening and night/early morning. Time prediction modelling identified 10 independently contributing metabolite biomarkers, which together achieved prediction accuracies expressed as AUC of 0.81, 0.86 and 0.90 for these three time categories respectively. Combining metabolites with previously established hormone and mRNA biomarkers in time prediction modelling resulted in an improved prediction accuracy reaching AUCs of 0.85, 0.89 and 0.96 respectively. The additional impact of metabolite biomarkers, however, was rather minor as the previously established model with melatonin, cortisol and three mRNA biomarkers achieved AUC values of 0.88, 0.88 and 0.95 for the same three time categories respectively. Nevertheless, the selected metabolites could become practically useful in scenarios where RNA marker information is unavailable such as due to RNA degradation. This is the first metabolomics study investigating circulating metabolites for trace deposition timing, and more work is needed to fully establish their usefulness for this forensic purpose.Publisher PDFPeer reviewe
    corecore