47 research outputs found

    Synthesis of niobium-alumina composite aggregates and their application in coarse-grained refractory ceramic-metal castables

    Get PDF
    Niobium-alumina aggregate fractions with particle sizes up to 3150 µm were produced by crushing pre-synthesised fine-grained composites. Phase separation with niobium enrichment in the aggregate class 45–500 µm was revealed by XRD/Rietveld analysis. To reduce the amount of carbon-based impurities, no organic additives were used for the castable mixtures, which resulted in water demands of approximately 27 vol.% for the fine- and coarse-grained castables. As a consequence, open porosities of 18% and 30% were determined for the fine- and coarse-grained composites, respectively. Due to increased porosity, the modulus of rupture at room temperature decreased from 52 MPa for the fine-grained composite to 11 MPa for the coarse-grained one. However, even the compressive yield strength decreased from 49 MPa to 18 MPa at 1300 °C for the fine-grained to the coarse-grained composite, the latter showed still plasticity with a strain up to 5%. The electrical conductivity of fine-grained composite samples was in the range between 40 and 60 S/cm, which is fifteen magnitudes above the values of pure corundum

    The Sum over Topologies in Three-Dimensional Euclidean Quantum Gravity

    Full text link
    In Hawking's Euclidean path integral approach to quantum gravity, the partition function is computed by summing contributions from all possible topologies. The behavior such a sum can be estimated in three spacetime dimensions in the limit of small cosmological constant. The sum over topologies diverges for either sign of Λ\Lambda, but for dramatically different reasons: for Λ>0\Lambda>0, the divergent behavior comes from the contributions of very low volume, topologically complex manifolds, while for Λ<0\Lambda<0 it is a consequence of the existence of infinite sequences of relatively high volume manifolds with converging geometries. Possible implications for four-dimensional quantum gravity are discussed.Comment: 12 pages (LaTeX), UCD-92-1

    Steel ceramic composite anodes based on recycled MgO–C lining bricks for applications in cryolite/aluminum melts

    Get PDF
    Novel manufacturing route for composite inert anodes containing 60:40 of 316 L stainless steel and MgO powder obtained from recycled MgO–C brick material has been developed and evaluated. After burnout of residual carbon from the recycled MgO–C powder, MgO and steel were granulated and pre-sintered in order to generate agglomerates of composite material acting as coarse grains within the composite material, and thus lowering the sintering-related shrinkage. The pre-sintered granules were mixed with raw steel and MgO powder in order to achieve a high particle packing and subsequently cold isostatically pressed in the form of electrodes. All manufactured anode samples were subjected to sintering at 1350 °C and pre-oxidation at different temperatures – 800 °C, 900 °C, and 1000 °C. Afterwards, mechanical and electrical properties of the manufactured electrodes were characterized. The results show that upcycling of the MgO–C material enables manufacturing of sophisticated electrode products, which can be applied in the aluminum industry

    Cyclic Statistics In Three Dimensions

    Full text link
    While 2-dimensional quantum systems are known to exhibit non-permutation, braid group statistics, it is widely expected that quantum statistics in 3-dimensions is solely determined by representations of the permutation group. This expectation is false for certain 3-dimensional systems, as was shown by the authors of ref. [1,2,3]. In this work we demonstrate the existence of ``cyclic'', or ZnZ_n, {\it non-permutation group} statistics for a system of n > 2 identical, unknotted rings embedded in R3R^3. We make crucial use of a theorem due to Goldsmith in conjunction with the so called Fuchs-Rabinovitch relations for the automorphisms of the free product group on n elements.Comment: 13 pages, 1 figure, LaTex, minor page reformattin

    Properties of 3-manifolds for relativists

    Full text link
    In canonical quantum gravity certain topological properties of 3-manifolds are of interest. This article gives an account of those properties which have so far received sufficient attention, especially those concerning the diffeomorphism groups of 3-manifolds. We give a summary of these properties and list some old and new results concerning them. The appendix contains a discussion of the group of large diffeomorphisms of the ll-handle 3-manifold.Comment: 20 pages. Plain-TeX, no figures, 1 Table (A4 format

    Quantum Geons and Noncommutative Spacetimes

    Get PDF
    Physical considerations strongly indicate that spacetime at Planck scales is noncommutative. A popular model for such a spacetime is the Moyal plane. The Poincar\`e group algebra acts on it with a Drinfel'd-twisted coproduct. But the latter is not appropriate for more complicated spacetimes such as those containing the Friedman-Sorkin (topological) geons. They have rich diffeomorphism groups and in particular mapping class groups, so that the statistics groups for N identical geons is strikingly different from the permutation group SNS_N. We generalise the Drinfel'd twist to (essentially) generic groups including to finite and discrete ones and use it to modify the commutative spacetime algebras of geons as well to noncommutative algebras. The latter support twisted actions of diffeos of geon spacetimes and associated twisted statistics. The notion of covariant fields for geons is formulated and their twisted versions are constructed from their untwisted versions. Non-associative spacetime algebras arise naturally in our analysis. Physical consequences, such as the violation of Pauli principle, seem to be the outcomes of such nonassociativity. The richness of the statistics groups of identical geons comes from the nontrivial fundamental groups of their spatial slices. As discussed long ago, extended objects like rings and D-branes also have similar rich fundamental groups. This work is recalled and its relevance to the present quantum geon context is pointed out.Comment: 41 page

    Low-density, one-dimensional quantum gases in a split trap

    Full text link
    We investigate degenerate quantum gases in one dimension trapped in a harmonic potential that is split in the centre by a pointlike potential. Since the single particle eigenfunctions of such a system are known for all strengths of the central potential, the dynamics for non-interacting fermionic gases and low-density, strongly interacting bosonic gases can be investigated exactly using the Fermi-Bose mapping theorem. We calculate the exact many-particle ground-state wave-functions for both particle species, investigate soliton-like solutions, and compare the bosonic system to the well-known physics of Bose gases described by the Gross-Pitaevskii equation. We also address the experimentally important questions of creation and detection of such states.Comment: 7 pages, 5 figure

    Kappa-deformation of phase space; generalized Poincare algebras and R-matrix

    Full text link
    We deform Heisenberg algebra and corresponding coalgebra by twist. We present undeformed and deformed tensor identities. Coalgebras for the generalized Poincar\'{e} algebras have been constructed. The exact universal RR-matrix for the deformed Heisenberg (co)algebra is found. We show, up to the third order in the deformation parameter, that in the case of κ\kappa-Poincar\'{e} Hopf algebra this RR-matrix can be expressed in terms of Poincar\'{e} generators only. This implies that the states of any number of identical particles can be defined in a κ\kappa-covariant way.Comment: 10 pages, revtex4; discussion enlarged, references adde
    corecore