41 research outputs found

    Cultivation of Inonotus hispidus in Stirred Tank and Wave Bag Bioreactors to Produce the Natural Colorant Hispidin

    Get PDF
    Hispidin (6-(3,4-dihydroxystyrl)-4-hydroxy-2-pyrone) production in submerged cultured mycelia of the basidiomycete Inonotus hispidus was doubled in shake flasks through irradiation with white light. The daily addition of 1 mM hydrogen peroxide as a chemical stressor and a repeated supplementation of the shake flask cultures with 2 mM caffeic acid, a biogenetic precursor, further increased the hispidin synthesis. These cultivation conditions were combined and applied to parallel fermentation trials on the 4 L scale using a classical stirred tank bioreactor and a wave bag bioreactor. No significant differences in biomass yield and colorant production were observed. The hispidin concentration in both bioreactors reached 5.5 g·L−1, the highest ever published. Textile dyeing with hispidin was successful, but impeded by its limited light stability in comparison to industrial dyes. However, following the idea of sustainability and the flawless toxicity profile, applications in natural cosmetics, other daily implements, or even therapeutics appear promisin

    Pilot-Scale Production of the Natural Colorant Laetiporic Acid, Its Stability and Potential Applications

    Get PDF
    Laetiporus sulphureus, a wood-decaying basidiomycete, produces yellow-orange pigments in fruiting bodies and, as was recently shown, in submerged cultivated mycelia. Out of four strains, the most potent laetiporic acid producer was identified and its yield compared in different media. The complex Moser b medium was replaced by potato dextrose broth, achieving higher yields at a lower cost. Cultivation was then scaled up from shake flask to a 7 L stirred tank bioreactor. Optimization of parameters led to increased product concentrations up to 1 g L−1, the highest yield reported so far. An in situ product recovery strategy with a biphasic system was established, increasing the yield by 19% on the shake flask scale. A crude ethanolic extract of the biomass was examined for color stability and application trials. In contrast to what has been suggested in the past, the pigment showed limited long-term stability to oxygen and light, but was stable under storage in the dark at 4 °C under nitrogen. The orange extract was successfully incorporated into different matrices like foods, cosmetics and textiles. Laetiporic acid can potentially replace petrochemical based synthetic dyes, and can thus support the development of a circular bioeconomy

    Production of natural colorants by liquid fermentation with Chlorociboria aeruginascens and Laetiporus sulphureus and prospective applications

    Get PDF
    The replacement of potentially hazardous synthetic dyes with natural dyes and pigments are of great interest for a sustainable economy. In order to obtain cost-efficient, environmentally friendly and competitive products, improvements in the cultivation and extraction of pigment-producing organisms and in dyeing processes are necessary. In our study, we were able to scale up the production of xylindein by Chlorociboria aeruginascens from 3 to 70 L bioreactor cultivations. We have identified important bioprocess parameters like low shear stress (150 rpm, tip speed <0.5 m/s) for optimal pigment yield (4.8 mg/L/d). Additionally, we have demonstrated the potential of laetiporic acid production by Laetiporus sulphureus in various cultivation systems and media, achieving dried biomass concentrations of almost 10 g/L with a 7 L bioreactor cultivation after 17 days. Extractions performed at 70°C and 15 min incubation time showed optimal results. To the best of our knowledge, we have described for the first time the use of this pigment in silk dyeing, which results in a brilliant hue that cannot easily be produced by other natural pigments. © 2020 The Authors. Engineering in Life Sciences published by Wiley-VCH Gmb

    Intercalation of small molecules into DNA in chromatin is primarily controlled by superhelical constraint

    Get PDF
    The restricted access of regulatory factors to their binding sites on DNA wrapped around the nucleosomes is generally interpreted in terms of molecular shielding exerted by nucleosomal structure and internucleosomal interactions. Binding of proteins to DNA often includes intercalation of hydrophobic amino acids into the DNA. To assess the role of constrained superhelicity in limiting these interactions, we studied the binding of small molecule intercalators to chromatin in close to native conditions by laser scanning cytometry. We demonstrate that the nucleosome-constrained superhelical configuration of DNA is the main barrier to intercalation. As a result, intercalating compounds are virtually excluded from the nucleosome-occupied regions of the chromatin. Binding of intercalators to extranucleosomal regions is limited to a smaller degree, in line with the existence of net supercoiling in the regions comprising linker and nucleosome free DNA. Its relaxation by inducing as few as a single nick per ~50 kb increases intercalation in the entire chromatin loop, demonstrating the possibility for long-distance effects of regulatory potential

    Guastalla in Sanssouci.Zum Szenenbild im DEFA-Film "Emilia Galotti" von 1957

    Get PDF
    Über eine randständige Position ist die Gattung des Szenenbilds in der Forschung bisher nicht hinaus gelangt und auch die Verfilmung von Klassikerliteratur durch die DEFA droht in Vergessenheit zu geraten. Dieser Beitrag unternimmt den Versuch diesen Status zu revidieren. Anhand der DEFA-Filmadaption von Gotthold Ephraim Lessings Klassiker Emilia Galotti durch den Regisseur Martin Hellberg wird vordergründig der Frage nach Inhalt und Wirkung des Szenenbilds, dem bewusst durch den Szenographen gestalteten Handlungs- und Erlebnisraums des Films, nachgegangen
    corecore