153 research outputs found

    Collective Operations on Number-Membered Sets

    Get PDF
    The article starts with definitions of sets of opposite and inverse numbers of a given number membered set. Next, collective addition, subtraction, multiplication and division of two sets are defined. Complex numbers cases and extended real numbers ones are introduced separately and unified for reals. Shortcuts for singletons cases are also defined.Institute of Computer Science, University of BiaƂystok, Sosnowa 64, 15-887 BiaƂystok PolandGrzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4):341-347, 2003.Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990

    Formalization of Integral Linear Space

    Get PDF
    In this article, we formalize integral linear spaces, that is a linear space with integer coefficients. Integral linear spaces are necessary for lattice problems, LLL (Lenstra-Lenstra-Lovász) base reduction algorithm that outputs short lattice base and cryptographic systems with lattice [8].Futa Yuichi - Shinshu University, Nagano, JapanOkazaki Hiroyuki - Shinshu University, Nagano, JapanShidama Yasunari - Shinshu University, Nagano, JapanGrzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.CzesƂaw ByliƄski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama. Dimension of real unitary space. Formalized Mathematics, 11(1):23-28, 2003.Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.JarosƂaw Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.Daniele Micciancio and Shafi Goldwasser. Complexity of lattice problems: A cryptographic perspective (the international series in engineering and computer science). 2002.Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.MichaƂ J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.Wojciech A. Trybulec. Basis of real linear space. Formalized Mathematics, 1(5):847-850, 1990.Wojciech A. Trybulec. Linear combinations in real linear space. Formalized Mathematics, 1(3):581-588, 1990.Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.Hiroshi Yamazaki and Yasunari Shidama. Algebra of vector functions. Formalized Mathematics, 3(2):171-175, 1992

    Arithmetic Operations on Functions from Sets into Functional Sets

    Get PDF
    In this paper we introduce sets containing number-valued functions. Different arithmetic operations on maps between any set and such functional sets are later defined.Institute of Computer Science, University of Bialystok, Sosnowa 64, 15-887 Bialystok Polan

    A Model of Mizar Concepts - Unification

    Get PDF
    The aim of this paper is to develop a formal theory of Mizar linguistic concepts following the ideas from [6] and [7]. The theory presented is an abstraction from the existing implementation of the Mizar system and is devoted to the formalization of Mizar expressions. The concepts formalized here are: standarized constructor signature, arity-rich signatures, and the unification of Mizar expressions.The University of Finance and Management, BiaƂystok-EƂk, PolandGrzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.Grzegorz Bancerek. Cartesian product of functions. Formalized Mathematics, 2(4):547-552, 1991.Grzegorz Bancerek. Joining of decorated trees. Formalized Mathematics, 4(1):77-82, 1993.Grzegorz Bancerek. Subtrees. Formalized Mathematics, 5(2):185-190, 1996.Grzegorz Bancerek. Institution of many sorted algebras. Part I: Signature reduct of an algebra. Formalized Mathematics, 6(2):279-287, 1997.Grzegorz Bancerek. On the structure of Mizar types. In Herman Geuvers and Fairouz Kamareddine, editors, Electronic Notes in Theoretical Computer Science, volume 85. Elsevier, 2003.Grzegorz Bancerek. Towards the construction of a model of Mizar concepts. Formalized Mathematics, 16(2):207-230, 2008, doi:10.2478/v10037-008-0027-x.Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.Grzegorz Bancerek and Artur KorniƂowicz. Yet another construction of free algebra. Formalized Mathematics, 9(4):779-785, 2001.Grzegorz Bancerek and Yatsuka Nakamura. Full adder circuit. Part I. Formalized Mathematics, 5(3):367-380, 1996.CzesƂaw ByliƄski. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.CzesƂaw ByliƄski. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.CzesƂaw ByliƄski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.CzesƂaw ByliƄski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.Agata DarmochwaƂ. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.Beata Perkowska. Free many sorted universal algebra. Formalized Mathematics, 5(1):67-74, 1996.Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.Andrzej Trybulec. Many sorted algebras. Formalized Mathematics, 5(1):37-42, 1996.Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990

    The Geometric Interior in Real Linear Spaces

    Get PDF
    We introduce the notions of the geometric interior and the centre of mass for subsets of real linear spaces. We prove a number of theorems concerning these notions which are used in the theory of abstract simplicial complexes.Institute of Informatics, University of BiaƂystok, PolandGrzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.CzesƂaw ByliƄski. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.CzesƂaw ByliƄski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.Agata DarmochwaƂ. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama. Convex sets and convex combinations. Formalized Mathematics, 11(1):53-58, 2003.Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.JarosƂaw Kotowicz. Real sequences and basic operations on them. Formalized Mathematics, 1(2):269-272, 1990.Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.Karol Pąk. Affine independence in vector spaces. Formalized Mathematics, 18(1):87-93, 2010, doi: 10.2478/v10037-010-0012-z.Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.Wojciech A. Trybulec. Linear combinations in real linear space. Formalized Mathematics, 1(3):581-588, 1990.Wojciech A. Trybulec. Partially ordered sets. Formalized Mathematics, 1(2):313-319, 1990.Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990

    Some Operations on Quaternion Numbers

    Get PDF
    In this article, we give some equality and basic theorems about quaternion numbers, and some special operations.Li Bo - Qingdao University of Science and Technology, ChinaLiang Xiquan - Qingdao University of Science and Technology, ChinaWang Pan - Qingdao University of Science and Technology, ChinaZhuang Yanping - Qingdao University of Science and Technology, ChinaGrzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.CzesƂaw ByliƄski. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.CzesƂaw ByliƄski. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.CzesƂaw ByliƄski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.CzesƂaw ByliƄski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.Fuguo Ge. Inner products, group, ring of quaternion numbers. Formalized Mathematics, 16(2):135-139, 2008, doi:10.2478/v10037-008-0019-x.Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.Xiquan Liang and Fuguo Ge. The quaternion numbers. Formalized Mathematics, 14(4):161-169, 2006, doi:10.2478/v10037-006-0020-1.Andrzej Trybulec. Enumerated sets. Formalized Mathematics, 1(1):25-34, 1990.Andrzej Trybulec and CzesƂaw ByliƄski. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990

    Set of Points on Elliptic Curve in Projective Coordinates

    Get PDF
    In this article, we formalize a set of points on an elliptic curve over GF(p). Elliptic curve cryptography [10], whose security is based on a difficulty of discrete logarithm problem of elliptic curves, is important for information security.Futa Yuichi - Shinshu University, Nagano, JapanOkazaki Hiroyuki - Shinshu University, Nagano, JapanShidama Yasunari - Shinshu University, Nagano, JapanGrzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.Józef BiaƂas. Group and field definitions. Formalized Mathematics, 1(3):433-439, 1990.CzesƂaw ByliƄski. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.CzesƂaw ByliƄski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.CzesƂaw ByliƄski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.Agata DarmochwaƂ. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.G. Seroussi I. Blake and N. Smart. Elliptic Curves in Cryptography. Number 265 in London Mathematical Society Lecture Note Series. Cambridge University Press, 1999.Eugeniusz Kusak, Wojciech LeoƄczuk, and MichaƂ Muzalewski. Abelian groups, fields and vector spaces. Formalized Mathematics, 1(2):335-342, 1990.RafaƂ Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.Konrad Raczkowski and PaweƂ Sadowski. Equivalence relations and classes of abstraction. Formalized Mathematics, 1(3):441-444, 1990.Christoph Schwarzweller. The ring of integers, euclidean rings and modulo integers. Formalized Mathematics, 8(1):29-34, 1999.Christoph Schwarzweller. The binomial theorem for algebraic structures. Formalized Mathematics, 9(3):559-564, 2001.Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.MichaƂ J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.Wojciech A. Trybulec. Groups. Formalized Mathematics, 1(5):821-827, 1990.Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.Edmund Woronowicz and Anna Zalewska. Properties of binary relations. Formalized Mathematics, 1(1):85-89, 1990

    The Perfect Number Theorem and Wilson's Theorem

    Get PDF
    This article formalizes proofs of some elementary theorems of number theory (see [1, 26]): Wilson's theorem (that n is prime iff n > 1 and (n - 1)! ≅ -1 (mod n)), that all primes (1 mod 4) equal the sum of two squares, and two basic theorems of Euclid and Euler about perfect numbers. The article also formally defines Euler's sum of divisors function Ί, proves that Ί is multiplicative and that ÎŁ k|n Ί(k) = n.Casella Postale 49, 54038 Montignoso, ItalyM. Aigner and G. M. Ziegler. Proofs from THE BOOK. Springer-Verlag, Berlin Heidelberg New York, 2004.Grzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.Grzegorz Bancerek. König's theorem. Formalized Mathematics, 1(3):589-593, 1990.Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite sequences. Formalized Mathematics, 1(1):107-114, 1990.JĂłzef BiaƂas. Infimum and supremum of the set of real numbers. Measure theory. Formalized Mathematics, 2(1):163-171, 1991.CzesƂaw ByliƄski. Basic functions and operations on functions. Formalized Mathematics, 1(1):245-254, 1990.CzesƂaw ByliƄski. The complex numbers. Formalized Mathematics, 1(3):507-513, 1990.CzesƂaw ByliƄski. Finite sequences and tuples of elements of a non-empty sets. Formalized Mathematics, 1(3):529-536, 1990.CzesƂaw ByliƄski. Functions and their basic properties. Formalized Mathematics, 1(1):55-65, 1990.CzesƂaw ByliƄski. Functions from a set to a set. Formalized Mathematics, 1(1):153-164, 1990.CzesƂaw ByliƄski. Partial functions. Formalized Mathematics, 1(2):357-367, 1990.CzesƂaw ByliƄski. Some basic properties of sets. Formalized Mathematics, 1(1):47-53, 1990.CzesƂaw ByliƄski. The sum and product of finite sequences of real numbers. Formalized Mathematics, 1(4):661-668, 1990.Agata DarmochwaƂ. Finite sets. Formalized Mathematics, 1(1):165-167, 1990.Yoshinori Fujisawa and Yasushi Fuwa. The Euler's function. Formalized Mathematics, 6(4):549-551, 1997.Yoshinori Fujisawa, Yasushi Fuwa, and Hidetaka Shimizu. Public-key cryptography and Pepin's test for the primality of Fermat numbers. Formalized Mathematics, 7(2):317-321, 1998.Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.Krzysztof Hryniewiecki. Recursive definitions. Formalized Mathematics, 1(2):321-328, 1990.Magdalena Jastrzebska and Adam Grabowski. On the properties of the Möbius function. Formalized Mathematics, 14(1):29-36, 2006, doi:10.2478/v10037-006-0005-0.Artur KorniƂowicz and Piotr Rudnicki. Fundamental Theorem of Arithmetic. Formalized Mathematics, 12(2):179-186, 2004.JarosƂaw Kotowicz and Yuji Sakai. Properties of partial functions from a domain to the set of real numbers. Formalized Mathematics, 3(2):279-288, 1992.RafaƂ Kwiatek. Factorial and Newton coefficients. Formalized Mathematics, 1(5):887-890, 1990.RafaƂ Kwiatek and Grzegorz Zwara. The divisibility of integers and integer relative primes. Formalized Mathematics, 1(5):829-832, 1990.W. J. LeVeque. Fundamentals of Number Theory. Dover Publication, New York, 1996.Takaya Nishiyama and Yasuho Mizuhara. Binary arithmetics. Formalized Mathematics, 4(1):83-86, 1993.Beata Padlewska. Families of sets. Formalized Mathematics, 1(1):147-152, 1990.Piotr Rudnicki. Little Bezout theorem (factor theorem). Formalized Mathematics, 12(1):49-58, 2004.Piotr Rudnicki and Andrzej Trybulec. Abian's fixed point theorem. Formalized Mathematics, 6(3):335-338, 1997.Piotr Rudnicki and Andrzej Trybulec. Multivariate polynomials with arbitrary number of variables. Formalized Mathematics, 9(1):95-110, 2001.Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics, 1(2):329-334, 1990.Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics, 1(1):97-105, 1990.Andrzej Trybulec. On the sets inhabited by numbers. Formalized Mathematics, 11(4):341-347, 2003.Andrzej Trybulec and CzesƂaw ByliƄski. Some properties of real numbers. Formalized Mathematics, 1(3):445-449, 1990.MichaƂ J. Trybulec. Integers. Formalized Mathematics, 1(3):501-505, 1990.Wojciech A. Trybulec. Non-contiguous substrings and one-to-one finite sequences. Formalized Mathematics, 1(3):569-573, 1990.Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics, 1(1):73-83, 1990.Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.Hiroshi Yamazaki, Yasunari Shidama, and Yatsuka Nakamura. Bessel's inequality. Formalized Mathematics, 11(2):169-173, 2003

    Brouwer Fixed Point Theorem in the General Case

    Get PDF
    In this article we prove the Brouwer fixed point theorem for an arbitrary convex compact subset of Δn with a non empty interior. This article is based on [15].Institute of Informatics, University of BiaƂystok, PolandGrzegorz Bancerek. Cardinal numbers. Formalized Mathematics, 1(2):377-382, 1990.Grzegorz Bancerek. The fundamental properties of natural numbers. Formalized Mathematics, 1(1):41-46, 1990.Grzegorz Bancerek. The ordinal numbers. Formalized Mathematics, 1(1):91-96, 1990.Agata DarmochwaƂ. Compact spaces. Formalized Mathematics, 1(2):383-386, 1990.Agata DarmochwaƂ. Families of subsets, subspaces and mappings in topological spaces. Formalized Mathematics, 1(2):257-261, 1990.Agata DarmochwaƂ. The Euclidean space. Formalized Mathematics, 2(4):599-603, 1991.Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama. Convex sets and convex combinations. Formalized Mathematics, 11(1):53-58, 2003.Noboru Endou, Takashi Mitsuishi, and Yasunari Shidama. Dimension of real unitary space. Formalized Mathematics, 11(1):23-28, 2003.Krzysztof Hryniewiecki. Basic properties of real numbers. Formalized Mathematics, 1(1):35-40, 1990.StanisƂawa Kanas, Adam Lecko, and Mariusz Startek. Metric spaces. Formalized Mathematics, 1(3):607-610, 1990.Artur KorniƂowicz and Yasunari Shidama. Intersections of intervals and balls in En/T. Formalized Mathematics, 12(3):301-306, 2004.Artur KorniƂowicz and Yasunari Shidama. Brouwer fixed point theorem for disks on the plane. Formalized Mathematics, 13(2):333-336, 2005.Yatsuka Nakamura, Andrzej Trybulec, and CzesƂaw ByliƄski. Bounded domains and unbounded domains. Formalized Mathematics, 8(1):1-13, 1999.Beata Padlewska and Agata DarmochwaƂ. Topological spaces and continuous functions. Formalized Mathematics, 1(1):223-230, 1990.Karol Sieklucki. Geometria i topologia. PWN, 1979.Andrzej Trybulec. Domains and their Cartesian products. Formalized Mathematics, 1(1):115-122, 1990.Andrzej Trybulec. A Borsuk theorem on homotopy types. Formalized Mathematics, 2(4):535-545, 1991.Wojciech A. Trybulec. Vectors in real linear space. Formalized Mathematics, 1(2):291-296, 1990.Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67-71, 1990.Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181-186, 1990.MirosƂaw Wysocki and Agata DarmochwaƂ. Subsets of topological spaces. Formalized Mathematics, 1(1):231-237, 1990

    The Real Vector Spaces of Finite Sequences are Finite Dimensional

    Get PDF
    In this paper we show the finite dimensionality of real linear spaces with their carriers equal Rn. We also give the standard basis of such spaces. For the set Rn we introduce the concepts of linear manifold subsets and orthogonal subsets. The cardinality of orthonormal basis of discussed spaces is proved to equal n.Yatsuka Nakamura - Shinshu University Nagano, JapanNagato Oya - Shinshu University Nagano, JapanYasunari Shidama - Shinshu University Nagano, JapanArtur KorniƂowicz - Institute of Computer Science, University of BiaƂystok, Sosnowa 64, 15-887 BiaƂystok, Polan
    • 

    corecore