
FORMALIZED MATHEMATICS

Vol. 18, No. 1, Pages 65–75, 2010
DOI: 10.2478/v10037-010-0009-7

A Model of Mizar Concepts – Unification

Grzegorz Bancerek1

Białystok Technical University
Poland

The University of Finance and Management
Białystok–Ełk, Poland

Summary. The aim of this paper is to develop a formal theory of Mizar
linguistic concepts following the ideas from [6] and [7]. The theory presented
is an abstraction from the existing implementation of the Mizar system and is
devoted to the formalization of Mizar expressions. The concepts formalized here
are: standarized constructor signature, arity-rich signatures, and the unification
of Mizar expressions.

MML identifier: ABCMIZ A, version: 7.11.04 4.130.1076

The notation and terminology used in this paper are introduced in the following
articles: [20], [21], [12], [22], [10], [14], [13], [17], [18], [15], [1], [8], [11], [2], [3], [4],
[19], [16], [5], [9], and [7]. For simplicity the abbreviation M = MaxConstrSign
is introduced.

1. Preliminary

In this paper i, j denote natural numbers.
Next we state two propositions:

(1) For every pair set x holds x = 〈〈x1, x2〉〉.
(2) For every infinite set X there exist sets x1, x2 such that x1, x2 ∈ X and

x1 6= x2.

In this article we present several logical schemes. The scheme MinimalEle-
ment deals with a finite non empty set A and a binary predicate P, and states
that:
1Partially supported by BTU Grant W/WI/1/06 and UF&M(B) Teaching Support

65
c© 2010 University of Białystok

ISSN 1426–2630(p), 1898-9934(e)

Brought to you by | Biblioteka Uniwersytecka w Bialymstoku
Authenticated

Download Date | 12/3/15 12:21 PM

brought to you by COREView metadata, citation and similar papers at core.ac.uk

https://core.ac.uk/display/83087913?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://fm.mizar.org/miz/abcmiz_a.miz
http://ftp.mizar.org/


66 grzegorz bancerek

There exists a set x such that x ∈ A and for every set y such that
y ∈ A holds not P[y, x]

provided the parameters have the following properties:
• For all sets x, y such that x, y ∈ A and P[x, y] holds not P[y, x],

and
• For all sets x, y, z such that x, y, z ∈ A and P[x, y] and P[y, z]

holds P[x, z].
The scheme FiniteC deals with a finite set A and a unary predicate P, and

states that:
P[A]

provided the following condition is satisfied:
• For every subset A of A such that for every set B such that B ⊂ A

holds P[B] holds P[A].
The scheme Numeration deals with a finite set A and a binary predicate P,

and states that:
There exists an one-to-one finite sequence s such that rng s = A
and for all i, j such that i, j ∈ dom s and P[s(i), s(j)] holds i < j

provided the parameters satisfy the following conditions:
• For all sets x, y such that x, y ∈ A and P[x, y] holds not P[y, x],

and
• For all sets x, y, z such that x, y, z ∈ A and P[x, y] and P[y, z]

holds P[x, z].
One can prove the following two propositions:

(3) For every variable x holds varcl vars(x) = vars(x).

(4) Let C be an initialized constructor signature and e be an expression of
C. Then e is compound if and only if it is not true that there exists an
element x of Vars such that e = xC.

2. Standardized Constructor Signature

Let us note that there exists a quasi-locus sequence which is empty.
Let C be a constructor signature. We say that C is standardized if and only

if the condition (Def. 1) is satisfied.

(Def. 1) Let o be an operation symbol of C. Suppose o is constructor. Then o ∈
Constructors and o1 = the result sort of o and Card((o2)1) = len Arity(o).

The following proposition is true

(5) Let C be a constructor signature. Suppose C is standardized. Let o

be an operation symbol of C. Then o is constructor if and only if
o ∈ Constructors .

Let us note that M is standardized.

Brought to you by | Biblioteka Uniwersytecka w Bialymstoku
Authenticated

Download Date | 12/3/15 12:21 PM



A model of Mizar concepts – unification 67

Let us observe that there exists a constructor signature which is initialized,
standardized, and strict.

Let C be an initialized standardized constructor signature and let c be a
constructor operation symbol of C. The loci of c yielding a quasi-locus sequence
is defined by:

(Def. 2) The loci of c = (c2)1.

Let C be a constructor signature. One can verify that there exists a subsi-
gnature of C which is constructor.

Let C be an initialized constructor signature. Note that there exists a con-
structor subsignature of C which is initialized.

Let C be a standardized constructor signature. One can verify that every
constructor subsignature of C is standardized.

One can prove the following two propositions:

(6) Let S1, S2 be standardized constructor signatures. Suppose the operation
symbols of S1 = the operation symbols of S2. Then the many sorted
signature of S1 = the many sorted signature of S2.

(7) For every constructor signature C holds C is standardized iff C is a sub-
signature of M.

Let C be an initialized constructor signature. Observe that there exists a
quasi-term of C which is non compound.

Let us mention that every element of Vars is pair.
The following propositions are true:

(8) For every element x of Vars such that vars(x) is natural holds
vars(x) = 0.

(9) Vars misses Constructors.

(10) For every element x of Vars holds x 6= ∗ and x 6= non .

(11) For every standardized constructor signature C holds Vars misses the
operation symbols of C.

(12) Let C be an initialized standardized constructor signature and e be an
expression of C. Then

(i) there exists an element x of Vars such that e = xC and e(∅) = 〈〈x,
term 〉〉, or

(ii) there exists an operation symbol o of C such that e(∅) = 〈〈o, the carrier
of C〉〉 but o ∈ Constructors or o = ∗ or o = non .

Let C be an initialized standardized constructor signature and let e be an
expression of C. Note that e(∅) is pair.

The following propositions are true:

(13) Let C be an initialized constructor signature, e be an expression of C,
and o be an operation symbol of C. Suppose e(∅) = 〈〈o, the carrier of C〉〉.
Then e is an expression of C from the result sort of o.

Brought to you by | Biblioteka Uniwersytecka w Bialymstoku
Authenticated

Download Date | 12/3/15 12:21 PM



68 grzegorz bancerek

(14) Let C be an initialized standardized constructor signature and e be an
expression of C. Then

(i) if e(∅)1 = ∗, then e is an expression of C from typeC, and
(ii) if e(∅)1 = non, then e is an expression of C from adjC.

(15) Let C be an initialized standardized constructor signature and e be an
expression of C. Then

(i) e(∅)1 ∈ Vars and e(∅)2 = term and e is a quasi-term of C, or
(ii) e(∅)2 = the carrier of C but e(∅)1 ∈ Constructors and e(∅)1 ∈ the

operation symbols of C or e(∅)1 = ∗ or e(∅)1 = non .

(16) Let C be an initialized standardized constructor signature and e be
an expression of C. If e(∅)1 ∈ Constructors, then e ∈ (the sorts of
FreeC(Vars C))((e(∅)1)1).

(17) Let C be an initialized standardized constructor signature and e be an
expression of C. Then e(∅)1 /∈ Vars if and only if e(∅)1 is an operation
symbol of C.

(18) Let C be an initialized standardized constructor signature and e be an
expression of C. If e(∅)1 ∈ Vars, then there exists an element x of Vars
such that x = e(∅)1 and e = xC.

(19) Let C be an initialized standardized constructor signature and e be an
expression of C. Suppose e(∅)1 = ∗. Then there exists an expression α of
C from adjC and there exists an expression q of C from typeC such that
e = 〈〈∗, 3〉〉-tree(α, q).

(20) Let C be an initialized standardized constructor signature and e be an
expression of C. If e(∅)1 = non, then there exists an expression α of C

from adjC such that e = 〈〈non, 3〉〉-tree(α).

(21) Let C be an initialized standardized constructor signature and e be an
expression of C. Suppose e(∅)1 ∈ Constructors . Then there exists an ope-
ration symbol o of C such that o = e(∅)1 and the result sort of o = o1 and
e is an expression of C from the result sort of o.

(22) Let C be an initialized standardized constructor signature and τ be a
quasi-term of C. Then τ is compound if and only if τ(∅)1 ∈ Constructors
and (τ(∅)1)1 = term .

(23) Let C be an initialized standardized constructor signature and τ be an
expression of C. Then τ is a non compound quasi-term of C if and only if
τ(∅)1 ∈ Vars .

(24) Let C be an initialized standardized constructor signature and τ be
an expression of C. Then τ is a quasi-term of C if and only if τ(∅)1 ∈
Constructors and (τ(∅)1)1 = term or τ(∅)1 ∈ Vars .

(25) Let C be an initialized standardized constructor signature and α be an
expression of C. Then α is a positive quasi-adjective of C if and only if

Brought to you by | Biblioteka Uniwersytecka w Bialymstoku
Authenticated

Download Date | 12/3/15 12:21 PM



A model of Mizar concepts – unification 69

α(∅)1 ∈ Constructors and (α(∅)1)1 = adj .

(26) Let C be an initialized standardized constructor signature and α be a
quasi-adjective of C. Then α is negative if and only if α(∅)1 = non .

(27) Let C be an initialized standardized constructor signature and τ be an
expression of C. Then τ is a pure expression of C from typeC if and only
if τ(∅)1 ∈ Constructors and (τ(∅)1)1 = type .

3. Expressions

In the sequel i is a natural number, x is a variable, and ` is a quasi-locus
sequence.

An expression is an expression of M. A valuation is a valuation of M. A quasi-
adjective is a quasi-adjective of M. The subset QuasiAdjs of FreeM(Vars M) is
defined as follows:

(Def. 3) QuasiAdjs = QuasiAdjs M.

A quasi-term is a quasi-term of M. The subset QuasiTerms of FreeM(Vars M)
is defined as follows:

(Def. 4) QuasiTerms = QuasiTerms M.

A quasi-type is a quasi-type of M. The functor QuasiTypes is defined as follows:

(Def. 5) QuasiTypes = QuasiTypes M.

One can verify the following observations:

∗ QuasiAdjs is non empty,

∗ QuasiTerms is non empty, and

∗ QuasiTypes is non empty.

Modes is a non empty subset of Constructors. Then Attrs is a non empty
subset of Constructors. Then Funcs is a non empty subset of Constructors.

In the sequel C denotes an initialized constructor signature.
The element set-constr of Modes is defined by:

(Def. 6) set-constr = 〈〈 type, 〈〈∅, 0〉〉〉〉.
One can prove the following propositions:

(28) The kind of set-constr = type and the loci of set-constr = ∅ and the
index of set-constr = 0.

(29) Constructors = {type,adj, term} × (QuasiLoci×N).

(30) 〈〈 rng `, i〉〉 ∈ Vars and ` a 〈〈〈 rng `, i〉〉〉 is a quasi-locus sequence.

(31) There exists ` such that len ` = i.

(32) For every finite subset X of Vars there exists ` such that rng ` = varclX.

(33) Let X, o be sets and p be a decorated tree yielding finite sequence. Given
C such that X =

⋃
(the sorts of FreeC(Vars C)). If o-tree(p) ∈ X, then p is

a finite sequence of elements of X.

Brought to you by | Biblioteka Uniwersytecka w Bialymstoku
Authenticated

Download Date | 12/3/15 12:21 PM



70 grzegorz bancerek

Let us consider C and let e be an expression of C. An expression of C is called
a subexpression of e if:

(Def. 7) It ∈ Subtrees(e).

The functor constrs e is defined by:

(Def. 8) constrs e = π1(rng e) ∩ {o : o ranges over constructor operation symbols
of C}.

The functor main-constr e is defined by:

(Def. 9) main-constr e =

{
e(∅)1, if e is compound,
∅, otherwise.

The functor args e yields a finite sequence of elements of FreeC(Vars C) and is
defined by:

(Def. 10) e = e(∅)-tree(args e).

Next we state three propositions:

(34) For every C holds every expression e of C is a subexpression of e.

(35) main-constr(xC) = ∅.
(36) Let c be a constructor operation symbol of C and p be a finite

sequence of elements of QuasiTerms C. If len p = len Arity(c), then
main-constr(c~(p)) = c.

Let us consider C and let e be an expression of C. We say that e is constructor
if and only if:

(Def. 11) e is compound and main-constr e is a constructor operation symbol of C.

Let us consider C. Observe that every expression of C which is constructor
is also compound.

Let us consider C. Observe that there exists an expression of C which is
constructor.

Let us consider C and let e be a constructor expression of C. One can verify
that there exists a subexpression of e which is constructor.

Let S be a non void signature, let X be a non empty yielding many sorted
set indexed by S, and let τ be an element of FreeS(X). Observe that rng τ is
relation-like.

One can prove the following proposition

(37) For every constructor expression e of C holds main-constr e ∈ constrs e.

4. Arity

For simplicity, we follow the rules: α is a quasi-adjective, τ , τ1, τ2 are quasi-
terms, ϑ is a quasi-type, and c is an element of Constructors.

Let C be a non void signature. We say that C is arity-rich if and only if the
condition (Def. 12) is satisfied.

Brought to you by | Biblioteka Uniwersytecka w Bialymstoku
Authenticated

Download Date | 12/3/15 12:21 PM



A model of Mizar concepts – unification 71

(Def. 12) Let n be a natural number and s be a sort symbol of C. Then {o; o ranges
over operation symbols of C: the result sort of o = s ∧ len Arity(o) = n}
is infinite.

Let o be an operation symbol of C. We say that o is nullary if and only if:

(Def. 13) Arity(o) = ∅.
We say that o is unary if and only if:

(Def. 14) len Arity(o) = 1.

We say that o is binary if and only if:

(Def. 15) len Arity(o) = 2.

The following proposition is true

(38) Let C be a non void signature and o be an operation symbol of C. Then
(i) if o is nullary, then o is not unary,

(ii) if o is nullary, then o is not binary, and
(iii) if o is unary, then o is not binary.

Let C be a constructor signature. Observe that nonC is unary and ∗C is
binary.

Let C be a constructor signature. Note that every operation symbol of C

which is nullary is also constructor.
The following proposition is true

(39) Let C be a constructor signature. Then C is initialized if and only if
there exists an operation symbol m of typeC and there exists an operation
symbol α of adjC such that m is nullary and α is nullary.

Let C be an initialized constructor signature. One can verify that there exists
an operation symbol of typeC which is nullary and constructor and there exists
an operation symbol of adjC which is nullary and constructor.

Let C be an initialized constructor signature. Observe that there exists an
operation symbol of C which is nullary and constructor.

One can check that every non void signature which is arity-rich has also an
operation for each sort and every constructor signature which is arity-rich is
also initialized.

One can check that M is arity-rich.
Let us mention that there exists a constructor signature which is arity-rich

and initialized.
Let C be an arity-rich constructor signature and let s be a sort symbol of C.

One can verify the following observations:

∗ there exists an operation symbol of s which is nullary and constructor,

∗ there exists an operation symbol of s which is unary and constructor,
and

∗ there exists an operation symbol of s which is binary and constructor.

Brought to you by | Biblioteka Uniwersytecka w Bialymstoku
Authenticated

Download Date | 12/3/15 12:21 PM



72 grzegorz bancerek

Let C be an arity-rich constructor signature. One can check that there exists
an operation symbol of C which is unary and constructor and there exists an
operation symbol of C which is binary and constructor.

The following proposition is true

(40) Let o be a nullary operation symbol of C. Then 〈〈o, the carrier of
C〉〉-tree(∅) is an expression of C from the result sort of o.

Let C be an initialized constructor signature and let m be a nullary con-
structor operation symbol of typeC. Then mt is a pure expression of C from
typeC.

Let c be an element of Constructors. The functor @c yielding a constructor
operation symbol of M is defined by:

(Def. 16) @c = c.

Let m be an element of Modes. Then @m is a constructor operation symbol
of typeM.

Let us note that @set-constr is nullary.
We now state the proposition

(41) Arity(@set-constr) = ∅.
The quasi-type set-type is defined by:

(Def. 17) set-type = ∅QuasiAdjs M ∗ (@set-constr)t.

The following proposition is true

(42) adjs set-type = ∅ and the base of set-type = (@set-constr)t.

Let ` be a finite sequence of elements of Vars. The functor args ` yields a
finite sequence of elements of QuasiTerms M and is defined as follows:

(Def. 18) len args ` = len ` and for every i such that i ∈ dom ` holds (args `)(i) =
(`i)M.

Let us consider c. The base expression of c yields an expression and is defined
as follows:

(Def. 19) The base expression of c = (@c)~(args (the loci of c)).

Next we state several propositions:

(43) For every operation symbol o of M holds o is constructor iff o ∈
Constructors .

(44) For every nullary operation symbol m of M holds main-constr(mt) = m.

(45) For every unary constructor operation symbol m of M and for every τ

holds main-constr(m(τ)) = m.

(46) For every α holds main-constr(nonM(α)) = non .

(47) For every binary constructor operation symbol m of M and for all τ1, τ2

holds main-constr(m(τ1, τ2)) = m.

(48) For every expression q of M from typeM and for every α holds
main-constr(∗M(α, q)) = ∗.

Brought to you by | Biblioteka Uniwersytecka w Bialymstoku
Authenticated

Download Date | 12/3/15 12:21 PM



A model of Mizar concepts – unification 73

Let ϑ be a quasi-type. The functor constrsϑ is defined by:

(Def. 20) constrsϑ = constrs (the base of ϑ) ∪
⋃
{constrsα : α ∈ adjsϑ}.

The following two propositions are true:

(49) For every pure expression q of M from typeM and for every finite subset
A of QuasiAdjs M holds constrs(A ∗ q) = constrs q∪

⋃
{constrsα : α ∈ A}.

(50) constrs(α ∗ ϑ) = constrsα ∪ constrsϑ.

5. Unification

Let C be an initialized constructor signature and let τ , p be expressions of
C. We say that τ matches p if and only if:

(Def. 21) There exists a valuation f of C such that τ = p[f ].

Let us note that the predicate τ matches p is reflexive.
The following proposition is true

(51) For all expressions τ1, τ2, τ3 of C such that τ1 matches τ2 and τ2 matches
τ3 holds τ1 matches τ3.

Let C be an initialized constructor signature and let A, B be subsets of
QuasiAdjs C. We say that A matches B if and only if:

(Def. 22) There exists a valuation f of C such that B[f ] ⊆ A.
Let us note that the predicate A matches B is reflexive.

The following proposition is true

(52) For all subsets A1, A2, A3 of QuasiAdjs C such that A1 matches A2 and
A2 matches A3 holds A1 matches A3.

Let C be an initialized constructor signature and let ϑ, P be quasi-types of
C. We say that ϑ matches P if and only if:

(Def. 23) There exists a valuation f of C such that (adjsP )[f ] ⊆ adjsϑ and (the
base of P )[f ] = the base of ϑ.

Let us note that the predicate ϑ matches P is reflexive.
One can prove the following proposition

(53) For all quasi-types ϑ1, ϑ2, ϑ3 of C such that ϑ1 matches ϑ2 and ϑ2

matches ϑ3 holds ϑ1 matches ϑ3.

Let C be an initialized constructor signature, let τ1, τ2 be expressions of C,
and let f be a valuation of C. We say that f unifies τ1 with τ2 if and only if:

(Def. 24) τ1[f ] = τ2[f ].

The following proposition is true

(54) Let τ1, τ2 be expressions of C and f be a valuation of C. If f unifies τ1

with τ2, then f unifies τ2 with τ1.

Let C be an initialized constructor signature and let τ1, τ2 be expressions of
C. We say that τ1 and τ2 are unifiable if and only if:

Brought to you by | Biblioteka Uniwersytecka w Bialymstoku
Authenticated

Download Date | 12/3/15 12:21 PM



74 grzegorz bancerek

(Def. 25) There exists a valuation f of C such that f unifies τ1 with τ2.

Let us notice that the predicate τ1 and τ2 are unifiable is reflexive and symmetric.
Let C be an initialized constructor signature and let τ1, τ2 be expressions of

C. We say that τ1 and τ2 are weakly-unifiable if and only if:

(Def. 26) There exists an irrelevant one-to-one valuation g of C such that Var τ2 ⊆
dom g and τ1 and τ2[g] are unifiable.

Let us note that the predicate τ1 and τ2 are weakly-unifiable is reflexive.
We now state the proposition

(55) For all expressions τ1, τ2 of C such that τ1 and τ2 are unifiable holds τ1

and τ2 are weakly-unifiable.

Let C be an initialized constructor signature and let τ , τ1, τ2 be expressions
of C. We say that τ is a unification of τ1 and τ2 if and only if:

(Def. 27) There exists a valuation f of C such that f unifies τ1 with τ2 and τ =
τ1[f ].

We now state two propositions:

(56) For all expressions τ1, τ2, τ of C such that τ is a unification of τ1 and τ2

holds τ is a unification of τ2 and τ1.

(57) For all expressions τ1, τ2, τ of C such that τ is a unification of τ1 and τ2

holds τ matches τ1 and τ matches τ2.

Let C be an initialized constructor signature and let τ , τ1, τ2 be expressions of
C. We say that τ is a general-unification of τ1 and τ2 if and only if the conditions
(Def. 28) are satisfied.

(Def. 28)(i) τ is a unification of τ1 and τ2, and
(ii) for every expression u of C such that u is a unification of τ1 and τ2

holds u matches τ .

6. Type Distribution

The following three propositions are true:

(58) Let n be a natural number and s be a sort symbol of M. Then there
exists a constructor operation symbol m of s such that len Arity(m) = n.

(59) Let given `, s be a sort symbol of M, and m be a constructor operation
symbol of s. If len Arity(m) = len `, then Var(m~(args `)) = rng `.

(60) Let X be a finite subset of Vars. Suppose varclX = X. Let s be a sort
symbol of M. Then there exists a constructor operation symbol m of s
and there exists a finite sequence p of elements of QuasiTerms M such
that len p = len Arity(m) and vars(m~(p)) = X.

Let d be a partial function from Vars to QuasiTypes. We say that d is even
if and only if:

Brought to you by | Biblioteka Uniwersytecka w Bialymstoku
Authenticated

Download Date | 12/3/15 12:21 PM



A model of Mizar concepts – unification 75

(Def. 29) For all x, ϑ such that x ∈ dom d and ϑ = d(x) holds vars(ϑ) = vars(x).

Let ` be a quasi-locus sequence. A partial function from Vars to QuasiTypes
is said to be a type-distribution for ` if:

(Def. 30) dom it = rng ` and it is even.

We now state the proposition

(61) For every empty quasi-locus sequence ` holds ∅ is a type-distribution
for `.

References

[1] Grzegorz Bancerek. König’s theorem. Formalized Mathematics, 1(3):589–593, 1990.
[2] Grzegorz Bancerek. Cartesian product of functions. Formalized Mathematics, 2(4):547–

552, 1991.
[3] Grzegorz Bancerek. Joining of decorated trees. Formalized Mathematics, 4(1):77–82,

1993.
[4] Grzegorz Bancerek. Subtrees. Formalized Mathematics, 5(2):185–190, 1996.
[5] Grzegorz Bancerek. Institution of many sorted algebras. Part I: Signature reduct of an

algebra. Formalized Mathematics, 6(2):279–287, 1997.
[6] Grzegorz Bancerek. On the structure of Mizar types. In Herman Geuvers and Fairo-

uz Kamareddine, editors, Electronic Notes in Theoretical Computer Science, volume 85.
Elsevier, 2003.

[7] Grzegorz Bancerek. Towards the construction of a model of Mizar concepts. Formalized
Mathematics, 16(2):207–230, 2008, doi:10.2478/v10037-008-0027-x.

[8] Grzegorz Bancerek and Krzysztof Hryniewiecki. Segments of natural numbers and finite
sequences. Formalized Mathematics, 1(1):107–114, 1990.

[9] Grzegorz Bancerek and Artur Korniłowicz. Yet another construction of free algebra.
Formalized Mathematics, 9(4):779–785, 2001.

[10] Grzegorz Bancerek and Yatsuka Nakamura. Full adder circuit. Part I. Formalized Ma-
thematics, 5(3):367–380, 1996.

[11] Czesław Byliński. Finite sequences and tuples of elements of a non-empty sets. Formalized
Mathematics, 1(3):529–536, 1990.

[12] Czesław Byliński. Functions and their basic properties. Formalized Mathematics, 1(1):55–
65, 1990.

[13] Czesław Byliński. Functions from a set to a set. Formalized Mathematics, 1(1):153–164,
1990.

[14] Czesław Byliński. Partial functions. Formalized Mathematics, 1(2):357–367, 1990.
[15] Agata Darmochwał. Finite sets. Formalized Mathematics, 1(1):165–167, 1990.
[16] Beata Perkowska. Free many sorted universal algebra. Formalized Mathematics, 5(1):67–

74, 1996.
[17] Andrzej Trybulec. Binary operations applied to functions. Formalized Mathematics,

1(2):329–334, 1990.
[18] Andrzej Trybulec. Tuples, projections and Cartesian products. Formalized Mathematics,

1(1):97–105, 1990.
[19] Andrzej Trybulec. Many sorted algebras. Formalized Mathematics, 5(1):37–42, 1996.
[20] Zinaida Trybulec. Properties of subsets. Formalized Mathematics, 1(1):67–71, 1990.
[21] Edmund Woronowicz. Relations and their basic properties. Formalized Mathematics,

1(1):73–83, 1990.
[22] Edmund Woronowicz. Relations defined on sets. Formalized Mathematics, 1(1):181–186,

1990.

Received November 20, 2009

Brought to you by | Biblioteka Uniwersytecka w Bialymstoku
Authenticated

Download Date | 12/3/15 12:21 PM




