18 research outputs found

    The GLV6/RGF8/CLEL2 peptide regulates early pericycle divisions during lateral root initiation

    Get PDF
    Small peptides of the Arabidopsis GLV/RGF/CLEL family are involved in different developmental programmes, including meristem maintenance and gravitropic responses. In addition, our previous report suggested that they also participate in the formation of lateral roots. Specifically, GLV6 is transcribed during the first stages of primordium development and GLV6 overexpression results in a strong reduction of emerged lateral roots. To investigate the cause of this phenotype we analysed primordium development in gain-of-function (gof) mutants and found that GLV6 induces supernumerary pericycle divisions, hindering the formation of a dome-shaped primordium, a prerequisite for successful emergence. The GLV6 phenotype could be reproduced by ectopic expression of the gene only in xylem-pole pericycle cells. Furthermore, GLV6 seems to function at the very beginning of lateral root initiation because GLV6 excess-either gene overexpression or peptide treatment-disrupts the first asymmetric cell divisions required for proper primordium formation. Our results suggest that GLV6 acts during lateral root initiation controlling the patterning of the first pericycle divisions

    GOLVEN peptide signalling through RGI receptors and MPK6 restricts asymmetric cell division during lateral root initiation

    Get PDF
    During lateral root initiation, lateral root founder cells undergo asymmetric cell divisions that generate daughter cells with different sizes and fates, a prerequisite for correct primordium organogenesis. An excess of the GLV6/RGF8 peptide disrupts these initial asymmetric cell divisions, resulting in more symmetric divisions and the failure to achieve lateral root organogenesis. Here, we show that loss-of-function GLV6 and its homologue GLV10 increase asymmetric cell divisions during lateral root initiation, and we identified three members of the RGF1 INSENSITIVE/RGF1 receptor subfamily as likely GLV receptors in this process. Through a suppressor screen, we found that MITOGEN-ACTIVATED PROTEIN KINASE6 is a downstream regulator of the GLV pathway. Our data indicate that GLV6 and GLV10 act as inhibitors of asymmetric cell divisions and signal through RGF1 INSENSITIVE receptors and MITOGEN-ACTIVATED PROTEIN KINASE6 to restrict the number of initial asymmetric cell divisions that take place during lateral root initiation. The authors demonstrate the negative role of GOLVEN peptides during lateral root initiation in Arabidopsis, at the very early stage of the first asymmetric cell division of lateral root founder cells, and identify the receptors for these peptides

    Multi-parametric screening in Arabidopsis thaliana seedlings

    No full text
    Phenotypic screening and subsequent target identification approaches are very valuable to identify chemical probes that can be used to explore the connection between phenotypes and biological pathways. However, assessing a phenotypic effect in plants in a high-throughput fashion is a challenging task and often requires expensive readout devices. In this chapter, we describe a cost-effective multi-parametric screening procedure that is compatible with liquid-handling systems and that enables the assessment of phenotypes in Arabidopsis thaliana seedlings in an automated way

    Transcriptional and functional classification of the GOLVEN/ROOT GROWTH FACTOR/CLE-like signaling peptides reveals their role in lateral root and hair formation

    No full text
    The GOLVEN (GLV)/ROOT GROWTH FACTORS/CLE-Like small signaling peptide family is encoded by 11 genes in Arabidopsis (Arabidopsis thaliana). Some of them have already been shown to control root meristem maintenance, auxin fluxes, and gravitropic responses. As a basis for the detailed analysis of their function, we determined the expression domains for each of the 11 GLV genes with promoter-reporter lines. Although they are collectively active in all examined plant parts, GLV genes have highly specific transcription patterns, generally restricted to very few cells or cell types in the root and shoot and in vegetative and reproductive tissues. GLV functions were further investigated with the comparative analysis of root phenotypes induced by gain-and loss-of-function mutants or in treatments with GLV-derived synthetic peptides. We identified functional classes that relate to the gene expression domains in the primary root and suggest that different GLV signals trigger distinct downstream pathways. Interestingly, GLV genes transcribed at the early stages of lateral root development strongly inhibited root branching when overexpressed. Furthermore, transcription patterns together with mutant phenotypes pointed to the involvement of GLV4 and GLV8 in root hair formation. Overall, our data suggest that nine GLV genes form three subgroups according to their expression and function within the root and offer a comprehensive framework to study the role of the GLV signaling peptides in plant development

    Image_2_High-throughput assays to identify archaea-targeting nitrification inhibitors.tif

    No full text
    Nitrification is a microbial process that converts ammonia (NH3) to nitrite (NO2-) and then to nitrate (NO3-). The first and rate-limiting step in nitrification is ammonia oxidation, which is conducted by both bacteria and archaea. In agriculture, it is important to control this process as high nitrification rates result in NO3- leaching, reduced nitrogen (N) availability for the plants and environmental problems such as eutrophication and greenhouse gas emissions. Nitrification inhibitors can be used to block nitrification, and as such reduce N pollution and improve fertilizer use efficiency (FUE) in agriculture. Currently applied inhibitors target the bacteria, and do not block nitrification by ammonia-oxidizing archaea (AOA). While it was long believed that nitrification in agroecosystems was primarily driven by bacteria, recent research has unveiled potential significant contributions from ammonia-oxidizing archaea (AOA), especially when bacterial activity is inhibited. Hence, there is also a need for AOA-targeting nitrification inhibitors. However, to date, almost no AOA-targeting inhibitors are described. Furthermore, AOA are difficult to handle, hindering their use to test or identify possible AOA-targeting nitrification inhibitors. To address the need for AOA-targeting nitrification inhibitors, we developed two miniaturized nitrification inhibition assays using an AOA-enriched nitrifying community or the AOA Nitrosospaera viennensis. These assays enable high-throughput testing of candidate AOA inhibitors. We here present detailed guidelines on the protocols and illustrate their use with some examples. We believe that these assays can contribute to the discovery of future AOA-targeting nitrification inhibitors, which could complement the currently applied inhibitors to increase nitrification inhibition efficiency in the field and as such contribute to a more sustainable agriculture.</p

    DataSheet_1_High-throughput assays to identify archaea-targeting nitrification inhibitors.docx

    No full text
    Nitrification is a microbial process that converts ammonia (NH3) to nitrite (NO2-) and then to nitrate (NO3-). The first and rate-limiting step in nitrification is ammonia oxidation, which is conducted by both bacteria and archaea. In agriculture, it is important to control this process as high nitrification rates result in NO3- leaching, reduced nitrogen (N) availability for the plants and environmental problems such as eutrophication and greenhouse gas emissions. Nitrification inhibitors can be used to block nitrification, and as such reduce N pollution and improve fertilizer use efficiency (FUE) in agriculture. Currently applied inhibitors target the bacteria, and do not block nitrification by ammonia-oxidizing archaea (AOA). While it was long believed that nitrification in agroecosystems was primarily driven by bacteria, recent research has unveiled potential significant contributions from ammonia-oxidizing archaea (AOA), especially when bacterial activity is inhibited. Hence, there is also a need for AOA-targeting nitrification inhibitors. However, to date, almost no AOA-targeting inhibitors are described. Furthermore, AOA are difficult to handle, hindering their use to test or identify possible AOA-targeting nitrification inhibitors. To address the need for AOA-targeting nitrification inhibitors, we developed two miniaturized nitrification inhibition assays using an AOA-enriched nitrifying community or the AOA Nitrosospaera viennensis. These assays enable high-throughput testing of candidate AOA inhibitors. We here present detailed guidelines on the protocols and illustrate their use with some examples. We believe that these assays can contribute to the discovery of future AOA-targeting nitrification inhibitors, which could complement the currently applied inhibitors to increase nitrification inhibition efficiency in the field and as such contribute to a more sustainable agriculture.</p

    Image_1_High-throughput assays to identify archaea-targeting nitrification inhibitors.tif

    No full text
    Nitrification is a microbial process that converts ammonia (NH3) to nitrite (NO2-) and then to nitrate (NO3-). The first and rate-limiting step in nitrification is ammonia oxidation, which is conducted by both bacteria and archaea. In agriculture, it is important to control this process as high nitrification rates result in NO3- leaching, reduced nitrogen (N) availability for the plants and environmental problems such as eutrophication and greenhouse gas emissions. Nitrification inhibitors can be used to block nitrification, and as such reduce N pollution and improve fertilizer use efficiency (FUE) in agriculture. Currently applied inhibitors target the bacteria, and do not block nitrification by ammonia-oxidizing archaea (AOA). While it was long believed that nitrification in agroecosystems was primarily driven by bacteria, recent research has unveiled potential significant contributions from ammonia-oxidizing archaea (AOA), especially when bacterial activity is inhibited. Hence, there is also a need for AOA-targeting nitrification inhibitors. However, to date, almost no AOA-targeting inhibitors are described. Furthermore, AOA are difficult to handle, hindering their use to test or identify possible AOA-targeting nitrification inhibitors. To address the need for AOA-targeting nitrification inhibitors, we developed two miniaturized nitrification inhibition assays using an AOA-enriched nitrifying community or the AOA Nitrosospaera viennensis. These assays enable high-throughput testing of candidate AOA inhibitors. We here present detailed guidelines on the protocols and illustrate their use with some examples. We believe that these assays can contribute to the discovery of future AOA-targeting nitrification inhibitors, which could complement the currently applied inhibitors to increase nitrification inhibition efficiency in the field and as such contribute to a more sustainable agriculture.</p
    corecore