5,770 research outputs found

    Operational tsunami modelling with TsunAWI – recent developments and applications

    Get PDF
    In this article, the tsunami model TsunAWI (Alfred Wegener Institute) and its application for hindcasts, inundation studies, and the operation of the tsunami scenario repository for the Indonesian tsunami early warning system are presented. TsunAWI was developed in the framework of the German-Indonesian Tsunami Early Warning System (GITEWS) and simulates all stages of a tsunami from the origin and the propagation in the ocean to the arrival at the coast and the inundation on land. It solves the non-linear shallow water equations on an unstructured finite element grid that allows to change the resolution seamlessly between a coarse grid in the deep ocean and a fine representation of coastal structures. During the GITEWS project and the following maintenance phase, TsunAWI and a framework of pre- and postprocessing routines was developed step by step to provide fast computation of enhanced model physics and to deliver high quality results

    Modeling of Nonhydrostatic Dynamics and Hydrology of the Lombok Strait

    Get PDF
    The long-wave dynamics of the Lombok Strait, which is the most important link of the West Indonesian throughflow connecting the Pacific and Indian Ocean waters, was simulated and analyzed. A feature of the strait is its extremely complex relief, on which water transport creates a field of pronounced vertical velocities, which requires consideration of the nonhydrostatic component of pressure. The work presents a 3-D nonhydrostatic model in curvilinear coordinates, which is verified on a test problem. Particular attention is paid to the method of solving the 3-D elliptical solver for a nonhydrostatic problem in boundary-matched coordinates and a vertical σ level. The difference in transport through the Lombok Strait is determined by the difference in atmospheric pressure over the Pacific and Indian Oceans. Based on the results of the global simulation, the role of these factors in terms of their variability is analyzed, and the value of nonhydrostatic pressure in the dynamics of the Lombok Strait is revealed and evaluated. The vertical dynamics of the Lombok Strait are considered in detail based on hydrostatic and nonhydrostatic approaches

    The artificial method of the ozone layer restoration

    Get PDF
    The problem of the ozone holes became known for mankind at the 80-th years last century. Ozone loss was first detected in the stratosphere over Antarctica. In 1985, Vienna Conception related to the ozone layer protection was proclaimed. In 1987, one hundred and forty nine nations signed the Montreal Protocol. But these actions didn’t solve the problem. The ozone holes exist and increase. The biggest ozone hole over Antarctica reached 24 million square kilometers in 2005. When you are citing the document, use the following link http://essuir.sumdu.edu.ua/handle/123456789/797

    DOMENICO TREZZINI E ALTRI MAESTRI TICINESI A PIETROBURGO E TALLINN ALL’INIZIO DEL SETTECENTO

    Get PDF
    The activities and work of architect Domenico Trezzini (1670–1734),and the masters that arrived in Russia with him, have been researchedfor a long time, and many contentions have been concretised ordisproven at various times. This article focuses on the issue of howmasters from a single area – Ticino, Switzerland – ended up creatingimportant fortifications, palaces and churches in the Russian Empireduring the reign of Peter the Great at the beginning of 18th century.The author describes the movement of Trezzini and the Ticino mastersfrom Copenhagen to Moscow as reported in various historical sourcesand the works of Danish and Russian researchers

    Current status of TsunAWI contributions to the Indonesia Tsunami Early Warning System (InaTEWS) with a comparison of warning products from near-realtime easyWave and precomputed TsunAWI simulations

    Get PDF
    Abstract: The Indonesia Tsunami Early Warning System delivers simulated tsunami forecasts in two different ways: either matching scenario(s) from a pre-computed database or running on-the-fly tsunami simulation. Recently, the database has been extended considerably taking into account additional source regions not covered in earlier stages of the system. In this contribution, we present the current status of the data base coverage as well as a study investigating the warning products obtained by the two modeling approaches. The pre-computed tsunami scenarios are based on the finite element model TsunAWI that employs a triangular mesh with resolution ranging from 20km in deep ocean to 300m in coastal areas and to as much as 50m in some highly resolved areas. TsunAWI solves the nonlinear shallow water equations and contains a wetting-drying inundation scheme. The on-the-fly propagation model easyWave solves the linear shallow water equations on a regular finite-difference grid with a resolution of about 1 km and utilizes several simple options to estimate coastal impact. This model is used for forecasting after a tsunami has been generated in an area not covered by the database or after a moment tensor solution shows an earthquake focal mechanism not present in the database. Since warning products like estimated wave height (EWH) and estimated time of arrival (ETA) along the coast are based on modeling results, it is crucial to compare the resulting forecasted warning levels obtained by the two approaches. Resolutions and numerical settings of both models are quite different, therefore variations in the resulting outputs are to be expected; nevertheless, the extent of differences in warning levels should not be too large for identical sources. In the present study, we systematically investigate differences in resulting warning products along InaTEWS forecast points facing the Sunda arc.  Whereas the finite-element mesh of TsunAWI covers the coast up to a terrain height of 50m and warning products have been pre-calculated directly in the forecast points, easyWave offers several options for their approximation including projections from offshore grid points or vertical wall. Differences and potential reasons for variations of warning products like the role of bathymetry resolution as well as the general approach for the assessment of EWH and ETA for different modeling frameworks are discussed

    On the remote sensing of oceanic and atmospheric convection in the Greenland Sea by synthetic aperture radar

    No full text
    In this paper we discuss characteristic properties of radar signatures of oceanic and atmospheric convection features in the Greenland Sea. If the water surface is clean (no surface films or ice coverage), oceanic and atmospheric features can become visible in radar images via a modulation of the surface roughness, and their radar signatures can be very similar. For an unambiguous interpretation and for the retrieval of quantitative information on current and wind variations from radar imagery with such signatures, theoretical models of current and wind phenomena and their radar imaging mechanisms must be utilized. We demonstrate this approach with the analysis of some synthetic aperture radar (SAR) images acquired by the satellites ERS-2 and RADARSAT-1. In once case, an ERS-2 SAR image an a RADARSAT-1 ScanSAR image exhibit pronounced cell-like signatures with length scales on the order of 10-20 km and modulation depths of about 5-6 dB and 9-10 dB, respectively. Simulations with a numerical SAR imagaing model and various input current and wind fields reveal that the signatures in both images can be expained consistently by wind variations on the order of±2.5 ms, but not by surface current variations on realistic orders of magnitude. Accordingly, the observed features must be atmospheric convection cells. This is confirmed by visible typical cloud patterns in a NOAA AVHRR image of the test scenario. In another case, the presence of an oceanic convective chimney is obvious from in situ data, but no signatures of it are visible in an ERS-2 SAR image. We show by numerical simulations with an oceanic convection model and our SAR imaging model that this is consistent with theoretical predictions, since the current gradients associated with the observed chimney are not sufficiently strong to give rise to significant signatures in an ERS-2 SAR image under the given conditions. Further model results indicate that it should be generally difficult to observe oceanic convection features in the Greenland Sea with ERS-2 or RADARSAT-1 SAR, since their signatures resulting from pure wave-current interaction will be too weak to become visible in the noisy SAR images in most cases. This situation will improve with the availability of future high-resolution SARs such as RADARSAT-2 SAR in fine resolution mode (2004) and TerraSAR-X (2005) which will offer significantly reduced speckle noise fluctuations at comparable spatial resolutions and thus a much better visibility of small image variations on spatial scales on the order of a few hundred meters
    corecore