15 research outputs found

    Ordered Structures from Nanoparticles/Block Copolymer Hybrids: Ex-situ Approaches toward Binary and Ternary Nanocomposites

    Get PDF
    Within the field of modern technology, nanomatrials, such as nanoparticles (NP), nanorods (NR), quantum dots (QD) etc. are, probably, the most prominent and promising candidates for current and future technological applications. The interest in nanomaterials arise not only form the continuous tendency towards dimensions minimisation of electronic devices, but also due to the fact, that new and, often, unique properties are acquired by the matter at the length scale between 1 and 100 nm. The ability to organize nanoparticles into ordered arrays extends the range of useful NP-based systems that can be fabricated and the diversity of functionalities they can serve. However, in order to successfully exploit nanoparticle assemblies in technological applications and to ensure efficient scale-up, a high level of direction and control is required. Recently, block copolymers (BCP) have attracted much attention as a powerful and very promising tool for creation of nanoscale ordered structures owing to their self-assembling properties. In addition, these systems offer the possibility to fabricate nanostructured composite materials via incorporation of certain nanoadditives (i.e. NPs). The concept is that by selective inclusion of the nanoparticles into one of the blocks of a self-assembling copolymer, the nanoparticles are forced into a defined spatial arrangement determined by the phase morphology of the block copolymer. In present work self-assembling phenomena of block copolymers was exploited to fabricate binary (NP/BCP) and ternary (NP1/NP2/BCP) composites, filled with pre-synthesized nanoparticles of various nature. Polystyrene-block-polyvinylpyridine block copolymers (PS-b-PVP) of various composition and molecular weight were used for fabrication of nanocomposites. The first part of the thesis focuses on fabrication of functional BCP-based composites containing magnetic nanoparticles (MNP), selectively assembled within one of the blocks of BCP matrix. Magnetic nanoparticles (MNPs) were selected among others since, as for today, there is the least number of successful results reported in literature on their selective incorporation into one of the phases of a BCP matrix. From the application point of view fabrication of periodic arrays of “magnetic domains” with periodicity on nanometer scale is also of interest for potential use in high-density magnetic data storage devices. For this purpose, ferrite-type MNP (Fe3O4, CoFe2O4) having apparent affinity toward polyvinylpyridine (PVP) phase were prepared using simple one-pot synthesis. Highly selective nanoparticles segregation into PVP domains of BCP was achieved owing to the presence of sparse stabilizing organic shell on the nanoparticles surface. Importantly, as-prepared MNPs did not require any additional surface modification step to acquire affinity towards PVP phase. Appropriate selection of annealing conditions allowed to produce patterns of nearly perfect degree of lateral order over relatively large surface large area (more than 4 sq µm). The second task of present work was fabrication of ternary NP1/NP2/BCP hybrid composites with two different types of nanoparticles being selectively localized in different microdomains of phase segregated block copolymer matrix. So far as only few studies have been reported on developing of approaches toward ternary composites, creation of alternative and straight forward routes toward such systems is still a challenge. In the frame of this part of present work, silver nanoparticles (AgNPs) covered with polystyrene shell were prepared, with the purpose to be incorporated into polystarene phase of phase separated PS-b-PVP block copolymer matrix. Two different approaches were tested to achieve desired three-component system. First, supposed simple blending of block copolymer and two kinds of nanoparticles having specific affinity toward different blocks of BCP in common solvent. After preparation of MNP/AgNP/BCP composite thin film and subsequent solvent vapour annealing, different domains of microphase segregated PS-b-PVP BCP were filled with different type of nanoparticles. Alternatively, step-wise approach for nanoparticles incorporation was developed and implemented for successful selective nanoparticles incorporation. For this purpose polystyrene stabilized AgNPs (i.e. NP1) were initially mixed with PS-b-PVP BCP to produce composite thin films having nanoparticles selectively located within PS microdomains, while citrate-stabilized second type nanoparticles (i.e NP2) were deposited from their aqueous solutions into PVP domains of AgNP/PS-b-PVP composites. By partition of nanoparticles incorporation procedure into two distinct steps it was also possible to increase effective loading of each type of NPs into BCP matrix

    Ordered Structures from Nanoparticles/Block Copolymer Hybrids: Ex-situ Approaches toward Binary and Ternary Nanocomposites

    Get PDF
    Within the field of modern technology, nanomatrials, such as nanoparticles (NP), nanorods (NR), quantum dots (QD) etc. are, probably, the most prominent and promising candidates for current and future technological applications. The interest in nanomaterials arise not only form the continuous tendency towards dimensions minimisation of electronic devices, but also due to the fact, that new and, often, unique properties are acquired by the matter at the length scale between 1 and 100 nm. The ability to organize nanoparticles into ordered arrays extends the range of useful NP-based systems that can be fabricated and the diversity of functionalities they can serve. However, in order to successfully exploit nanoparticle assemblies in technological applications and to ensure efficient scale-up, a high level of direction and control is required. Recently, block copolymers (BCP) have attracted much attention as a powerful and very promising tool for creation of nanoscale ordered structures owing to their self-assembling properties. In addition, these systems offer the possibility to fabricate nanostructured composite materials via incorporation of certain nanoadditives (i.e. NPs). The concept is that by selective inclusion of the nanoparticles into one of the blocks of a self-assembling copolymer, the nanoparticles are forced into a defined spatial arrangement determined by the phase morphology of the block copolymer. In present work self-assembling phenomena of block copolymers was exploited to fabricate binary (NP/BCP) and ternary (NP1/NP2/BCP) composites, filled with pre-synthesized nanoparticles of various nature. Polystyrene-block-polyvinylpyridine block copolymers (PS-b-PVP) of various composition and molecular weight were used for fabrication of nanocomposites. The first part of the thesis focuses on fabrication of functional BCP-based composites containing magnetic nanoparticles (MNP), selectively assembled within one of the blocks of BCP matrix. Magnetic nanoparticles (MNPs) were selected among others since, as for today, there is the least number of successful results reported in literature on their selective incorporation into one of the phases of a BCP matrix. From the application point of view fabrication of periodic arrays of “magnetic domains” with periodicity on nanometer scale is also of interest for potential use in high-density magnetic data storage devices. For this purpose, ferrite-type MNP (Fe3O4, CoFe2O4) having apparent affinity toward polyvinylpyridine (PVP) phase were prepared using simple one-pot synthesis. Highly selective nanoparticles segregation into PVP domains of BCP was achieved owing to the presence of sparse stabilizing organic shell on the nanoparticles surface. Importantly, as-prepared MNPs did not require any additional surface modification step to acquire affinity towards PVP phase. Appropriate selection of annealing conditions allowed to produce patterns of nearly perfect degree of lateral order over relatively large surface large area (more than 4 sq µm). The second task of present work was fabrication of ternary NP1/NP2/BCP hybrid composites with two different types of nanoparticles being selectively localized in different microdomains of phase segregated block copolymer matrix. So far as only few studies have been reported on developing of approaches toward ternary composites, creation of alternative and straight forward routes toward such systems is still a challenge. In the frame of this part of present work, silver nanoparticles (AgNPs) covered with polystyrene shell were prepared, with the purpose to be incorporated into polystarene phase of phase separated PS-b-PVP block copolymer matrix. Two different approaches were tested to achieve desired three-component system. First, supposed simple blending of block copolymer and two kinds of nanoparticles having specific affinity toward different blocks of BCP in common solvent. After preparation of MNP/AgNP/BCP composite thin film and subsequent solvent vapour annealing, different domains of microphase segregated PS-b-PVP BCP were filled with different type of nanoparticles. Alternatively, step-wise approach for nanoparticles incorporation was developed and implemented for successful selective nanoparticles incorporation. For this purpose polystyrene stabilized AgNPs (i.e. NP1) were initially mixed with PS-b-PVP BCP to produce composite thin films having nanoparticles selectively located within PS microdomains, while citrate-stabilized second type nanoparticles (i.e NP2) were deposited from their aqueous solutions into PVP domains of AgNP/PS-b-PVP composites. By partition of nanoparticles incorporation procedure into two distinct steps it was also possible to increase effective loading of each type of NPs into BCP matrix

    Ordered Structures from Nanoparticles/Block Copolymer Hybrids: Ex-situ Approaches toward Binary and Ternary Nanocomposites

    No full text
    Within the field of modern technology, nanomatrials, such as nanoparticles (NP), nanorods (NR), quantum dots (QD) etc. are, probably, the most prominent and promising candidates for current and future technological applications. The interest in nanomaterials arise not only form the continuous tendency towards dimensions minimisation of electronic devices, but also due to the fact, that new and, often, unique properties are acquired by the matter at the length scale between 1 and 100 nm. The ability to organize nanoparticles into ordered arrays extends the range of useful NP-based systems that can be fabricated and the diversity of functionalities they can serve. However, in order to successfully exploit nanoparticle assemblies in technological applications and to ensure efficient scale-up, a high level of direction and control is required. Recently, block copolymers (BCP) have attracted much attention as a powerful and very promising tool for creation of nanoscale ordered structures owing to their self-assembling properties. In addition, these systems offer the possibility to fabricate nanostructured composite materials via incorporation of certain nanoadditives (i.e. NPs). The concept is that by selective inclusion of the nanoparticles into one of the blocks of a self-assembling copolymer, the nanoparticles are forced into a defined spatial arrangement determined by the phase morphology of the block copolymer. In present work self-assembling phenomena of block copolymers was exploited to fabricate binary (NP/BCP) and ternary (NP1/NP2/BCP) composites, filled with pre-synthesized nanoparticles of various nature. Polystyrene-block-polyvinylpyridine block copolymers (PS-b-PVP) of various composition and molecular weight were used for fabrication of nanocomposites. The first part of the thesis focuses on fabrication of functional BCP-based composites containing magnetic nanoparticles (MNP), selectively assembled within one of the blocks of BCP matrix. Magnetic nanoparticles (MNPs) were selected among others since, as for today, there is the least number of successful results reported in literature on their selective incorporation into one of the phases of a BCP matrix. From the application point of view fabrication of periodic arrays of “magnetic domains” with periodicity on nanometer scale is also of interest for potential use in high-density magnetic data storage devices. For this purpose, ferrite-type MNP (Fe3O4, CoFe2O4) having apparent affinity toward polyvinylpyridine (PVP) phase were prepared using simple one-pot synthesis. Highly selective nanoparticles segregation into PVP domains of BCP was achieved owing to the presence of sparse stabilizing organic shell on the nanoparticles surface. Importantly, as-prepared MNPs did not require any additional surface modification step to acquire affinity towards PVP phase. Appropriate selection of annealing conditions allowed to produce patterns of nearly perfect degree of lateral order over relatively large surface large area (more than 4 sq µm). The second task of present work was fabrication of ternary NP1/NP2/BCP hybrid composites with two different types of nanoparticles being selectively localized in different microdomains of phase segregated block copolymer matrix. So far as only few studies have been reported on developing of approaches toward ternary composites, creation of alternative and straight forward routes toward such systems is still a challenge. In the frame of this part of present work, silver nanoparticles (AgNPs) covered with polystyrene shell were prepared, with the purpose to be incorporated into polystarene phase of phase separated PS-b-PVP block copolymer matrix. Two different approaches were tested to achieve desired three-component system. First, supposed simple blending of block copolymer and two kinds of nanoparticles having specific affinity toward different blocks of BCP in common solvent. After preparation of MNP/AgNP/BCP composite thin film and subsequent solvent vapour annealing, different domains of microphase segregated PS-b-PVP BCP were filled with different type of nanoparticles. Alternatively, step-wise approach for nanoparticles incorporation was developed and implemented for successful selective nanoparticles incorporation. For this purpose polystyrene stabilized AgNPs (i.e. NP1) were initially mixed with PS-b-PVP BCP to produce composite thin films having nanoparticles selectively located within PS microdomains, while citrate-stabilized second type nanoparticles (i.e NP2) were deposited from their aqueous solutions into PVP domains of AgNP/PS-b-PVP composites. By partition of nanoparticles incorporation procedure into two distinct steps it was also possible to increase effective loading of each type of NPs into BCP matrix

    Amphiphilic Block Copolymer Micelles in Selective Solvents: The Effect of Solvent Selectivity on Micelle Formation

    Get PDF
    We investigated the micellar behavior of a series of asymmetric polystyrene-block-poly (4-vinylpyridine) (PS-b-P4VP) block copolymers in different P4VP-selective alcoholic solvents. The micellar behavior was further correlated with the spectroscopic ellipsometry results obtained on swelling of PS and P4VP polymer films in the corresponding solvent vapors. The time-resolved (in situ) dynamic light scattering (DLS) measurements, in combination with (ex situ) electron microscopy imaging, revealed information about the aggregation state of PS-b-P4VP BCP in different alcohols and the effect of heat treatment. The ellipsometry measurements allowed us to estimate the difference in solvent selectivity toward PS/P4VP pair. Both DLS and ellipsometric studies suggested that less polar alcohols (i.e., 1-propanol, 1-butanol, and 1-pentanol) are likely to be close to each other in terms of their selectivity toward PS/P4VP pair, whereas more polar ethanol and methanol show the highest and the lowest affnity toward P4VP, respectively

    Polymer microcapsules loaded with Ag nanocatalyst as active microreactors

    Get PDF
    We report on the fabrication of a new complex catalytic system composed of silica-supported silver nanoparticles (AgNP) encapsulated inside polymer microcapsules (MC)s. The silver nanocatalyst itself was obtained by reduction of silver salt in the presence of SiOâ‚‚ particles acting as AgNP carriers, to provide a complex Ag/SiOâ‚‚ catalyst with the Ag surface completely free of capping agents. Ag/SiOâ‚‚ particles were enclosed inside the interior of polymer microcapsules. Due to the presence of the hydrophobic shell on the MC surface, catalytic reactions become feasible in an organic solvent environment. On the other hand, the hydrophilic nature of the MC interior forces the water-soluble reactants to concentrate inside the capsules which act as microreactors. Based on the example of catalytically driven reduction of 4-nitrophenol we demonstrate that encapsulated Ag/SiOâ‚‚ particles possess enhanced catalytic activity as compared to the catalyst being freely dispersed in reaction medium

    Block Copolymer Template-Directed Catalytic Systems: Recent Progress and Perspectives

    No full text
    Fabrication of block copolymer (BCP) template-assisted nano-catalysts has been a subject of immense interest in the field of catalysis and polymer chemistry for more than two decades now. Different methods, such as colloidal route, on-substrate methods, bulk self-assembly approaches, combined approaches, and many others have been used to prepare such nano-catalysts. The present review focuses on the advances made in this direction using diblock, triblock, and other types of BCP self-assembled structures. It will be shown how interestingly, researchers have exploited the features of tunable periodicity, domain orientation, and degree of lateral orders of self-assembled BCPs by using fundamental approaches, as well as using different combinations of simple methods to fabricate efficient catalysts. These approaches allow for fabricating catalysts that are used for the growth of single- and multi-walled carbon nanotubes (CNTs) on the substrate, size-dependent electrooxidation of the carbon mono oxide, cracking of 1,3,5-triisopropylbenzene (TIPB), methanol oxidation, formic acid oxidation, and for catalytic degradation of dyes and water pollutants, etc. The focus will also be on how efficient and ease-of-use catalysts can be fabricated using different BCP templates, and how these have contributed to the fabrication of different nano-catalysts, such as nanoparticle array catalysts, strawberry and Janus-like nanoparticles catalysts, mesoporous nanoparticles and film catalysts, gyroid-based bicontinuous catalysts, and hollow fiber membrane catalysts

    Nanoparticle Directed Domain Orientation in Thin Films of Asymmetric Block Copolymers

    No full text
    We investigated the thin film morphology of two different asymmetric block copolymers (BCP), polystyrene-block-poly(4-vinylpyridine) (PS-b-P4VP) and poly(n-pentyl methacrylate)-block-poly(methyl methacrylate) (PPMA-b-PMMA), loaded with pre-synthesized iron oxide nanoparticles (NP). The chemical composition of the BCP constituents determines the strength of the interaction between polymer chains and nanoparticles. In the case of NP/PS-b-P4VP system, the nanoparticles interact preferentially with the P4VP block and hence localize selectively in the P4VP cylindrical microdomains. However, for the NP/PPMA-b-PMMA system, the nanoparticles have no significant preference for the copolymer blocks and segregate at the polymer/substrate interface. Interestingly, this changes the effective substrate surface energy and hence leads to a remarkable change in domain orientation from parallel to perpendicular with respect to the substrate. These results clearly demonstrate the importance of both enthalpic and entropic factors which determine spatial distribution of NP in BCP films and influence domain orientation

    Hollow Au@TiO2 porous electrospun nanofibers for catalytic applications

    No full text
    Catalytically active porous and hollow titania nanofibers encapsulating gold nanoparticles were fabricated using a combination of sol-gel chemistry and coaxial electrospinning technique. We report the fabrication of catalytically active porous and hollow titania nanofibers encapsulating gold nanoparticles (AuNPs) using a combination of sol-gel chemistry and coaxial electrospinning technique. The coaxial electrospinning involved the use of a mixture of poly(vinyl pyrrolidone) (PVP) and titania sol as the shell forming component, whereas a mixture of poly(4-vinyl pyridine) (P4VP) and pre-synthesized AuNPs constituted the core forming component. The core-shell nanofibers were calcined stepwise up to 600 °C which resulted in decomposition and removal of the organic constituents of the nanofibers. This led to the formation of porous and hollow titania nanofibers, where the catalytic AuNPs were embedded in the inner wall of the titania shell. The catalytic activity of the prepared Au@TiO2 porous nanofibers was investigated using a model reaction of catalytic reduction of 4-nitrophenol and Congo red dye in the presence of NaBH4. The Au@TiO2 porous and hollow nanofibers exhibited excellent catalytic activity and recyclability, and the morphology of the nanofibers remained intact after repeated usage. The presented approach could be a promising route for immobilizing various nanosized catalysts in hollow titania supports for the design of stable catalytic systems where the added photocatalytic activity of titania could further be of significance. This journal is © The Royal Society of Chemistry
    corecore