204 research outputs found

    T-duality in the weakly curved background

    Get PDF
    We consider the closed string propagating in the weakly curved background which consists of constant metric and Kalb-Ramond field with infinitesimally small coordinate dependent part. We propose the procedure for constructing the T-dual theory, performing T-duality transformations along coordinates on which the Kalb-Ramond field depends. The obtained theory is defined in the non-geometric double space, described by the Lagrange multiplier yμy_\mu and its TT-dual y~μ\tilde{y}_\mu. We apply the proposed T-duality procedure to the T-dual theory and obtain the initial one. We discuss the standard relations between T-dual theories that the equations of motion and momenta modes of one theory are the Bianchi identities and the winding modes of the other

    New families of interpolating type IIB backgrounds

    Get PDF
    We construct new families of interpolating two-parameter solutions of type IIB supergravity. These correspond to D3-D5 systems on non-compact six-dimensional manifolds which are T^2 fibrations over Eguchi-Hanson and multi-center Taub-NUT spaces, respectively. One end of the interpolation corresponds to a solution with only D5 branes and vanishing NS three-form flux. A topology changing transition occurs at the other end, where the internal space becomes a direct product of the four-dimensional surface and the two-torus and the complexified NS-RR three-form flux becomes imaginary self-dual. Depending on the choice of the connections on the torus fibre, the interpolating family has either N=2 or N=1 supersymmetry. In the N=2 case it can be shown that the solutions are regular.Comment: 20 page

    Duality Invariant M-theory: Gauged supergravities and Scherk-Schwarz reductions

    Full text link
    We consider the reduction of the duality invariant approach to M-theory by a U-duality group valued Scherk-Schwarz twist. The result is to produce potentials for gauged supergravities that are normally associated with non-geometric compactifications. The local symmetry reduces to gauge transformations with the gaugings exactly matching those of the embedding tensor approach to gauged supergravity. Importantly, this approach now includes a nontrivial dependence of the fields on the extra coordinates of the extended space.Comment: 22 pages Latex; v2: typos corrected and references adde

    Novel Branches of (0,2) Theories

    Full text link
    We show that recently proposed linear sigma models with torsion can be obtained from unconventional branches of conventional gauge theories. This observation puts models with log interactions on firm footing. If non-anomalous multiplets are integrated out, the resulting low-energy theory involves log interactions of neutral fields. For these cases, we find a sigma model geometry which is both non-toric and includes brane sources. These are heterotic sigma models with branes. Surprisingly, there are massive models with compact complex non-Kahler target spaces, which include brane/anti-brane sources. The simplest conformal models describe wrapped heterotic NS5-branes. We present examples of both types.Comment: 36 pages, LaTeX, 2 figures; typo in Appendix fixed; references added and additional minor change

    Heterotic Flux Attractors

    Full text link
    We find attractor equations describing moduli stabilization for heterotic compactifications with generic SU(3)-structure. Complex structure and K\"ahler moduli are treated on equal footing by using SU(3)xSU(3)-structure at intermediate steps. All independent vacuum data, including VEVs of the stabilized moduli, is encoded in a pair of generating functions that depend on fluxes alone. We work out an explicit example that illustrates our methods.Comment: 37 pages, references and clarifications adde

    Membrane Sigma-Models and Quantization of Non-Geometric Flux Backgrounds

    Full text link
    We develop quantization techniques for describing the nonassociative geometry probed by closed strings in flat non-geometric R-flux backgrounds M. Starting from a suitable Courant sigma-model on an open membrane with target space M, regarded as a topological sector of closed string dynamics in R-space, we derive a twisted Poisson sigma-model on the boundary of the membrane whose target space is the cotangent bundle T^*M and whose quasi-Poisson structure coincides with those previously proposed. We argue that from the membrane perspective the path integral over multivalued closed string fields in Q-space is equivalent to integrating over open strings in R-space. The corresponding boundary correlation functions reproduce Kontsevich's deformation quantization formula for the twisted Poisson manifolds. For constant R-flux, we derive closed formulas for the corresponding nonassociative star product and its associator, and compare them with previous proposals for a 3-product of fields on R-space. We develop various versions of the Seiberg-Witten map which relate our nonassociative star products to associative ones and add fluctuations to the R-flux background. We show that the Kontsevich formula coincides with the star product obtained by quantizing the dual of a Lie 2-algebra via convolution in an integrating Lie 2-group associated to the T-dual doubled geometry, and hence clarify the relation to the twisted convolution products for topological nonassociative torus bundles. We further demonstrate how our approach leads to a consistent quantization of Nambu-Poisson 3-brackets.Comment: 52 pages; v2: references adde

    Matrix theory origins of non-geometric fluxes

    Full text link
    We explore the origins of non-geometric fluxes within the context of M theory described as a matrix model. Building upon compactifications of Matrix theory on non-commutative tori and twisted tori, we formulate the conditions which describe compactifications with non-geometric fluxes. These turn out to be related to certain deformations of tori with non-commutative and non-associative structures on their phase space. Quantization of flux appears as a natural consequence of the framework and leads to the resolution of non-associativity at the level of the unitary operators. The quantum-mechanical nature of the model bestows an important role on the phase space. In particular, the geometric and non-geometric fluxes exchange their properties when going from position space to momentum space thus providing a duality among the two. Moreover, the operations which connect solutions with different fluxes are described and their relation to T-duality is discussed. Finally, we provide some insights on the effective gauge theories obtained from these matrix compactifications.Comment: 1+31 pages, reference list update

    Dynamic SU(2) Structure from Seven-branes

    Get PDF
    We obtain a family of supersymmetric solutions of type IIB supergravity with dynamic SU(2) structure, which describe the local geometry near a stack of four D7-branes and one O7-plane wrapping a rigid four-cycle. The deformation to a generalized complex geometry is interpreted as a consequence of nonperturbative effects in the seven-brane gauge theory. We formulate the problem for seven-branes wrapping the base of an appropriate del Pezzo cone, and in the near-stack limit in which the four-cycle is flat, we obtain an exact solution in closed form. Our solutions serve to characterize the local geometry of nonperturbatively-stabilized flux compactifications.Comment: 49 pages, 2 figures; v2: minor corrections, references adde

    Gauged Double Field Theory

    Get PDF
    We find necessary and sufficient conditions for gauge invariance of the action of Double Field Theory (DFT) as well as closure of the algebra of gauge symmetries. The so-called weak and strong constraints are sufficient to satisfy them, but not necessary. We then analyze compactifications of DFT on twisted double tori satisfying the consistency conditions. The effective theory is a Gauged DFT where the gaugings come from the duality twists. The action, bracket, global symmetries, gauge symmetries and their closure are computed by twisting their analogs in the higher dimensional DFT. The non-Abelian heterotic string and lower dimensional gauged supergravities are particular examples of Gauged DFT.Comment: Minor changes, references adde
    corecore