13 research outputs found

    Problems of Automatic Test of Insulation in Cable Production

    Get PDF
    The article presents a qualitative and quantitative assessment of cable products insulation defects that can be reliably detected by means of the electrosparking control during the cable production process. The performance potential of technological control is evaluated: the limit of reliable detection of defective places in insulation taking into account the technical capabilities of modern control devices is marked

    Determination of enamel insulation corona resistance by high-frequency modulated pulses

    Get PDF
    In the article test equipment is described for corona resistance testing of enameled winding wire samples. The primary element of equipment is generator producing test voltage with necessary waveform and magnitude according to the required PWM. Test conditions are accurately simulated by operational loads on a winding insulation (simultaneous impact of temperature and corona discharges). Obtained results of average time to breakdown show that the enamel insulation modified by silicon nanoparticles has a maximum corona resistance

    ВизначСння Ρ‚Π΅Ρ€ΠΌΡ–Ρ‡Π½ΠΈΡ… Ρ‚Π° вогнСзахисних властивостСй Π½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Ρ–Π² співполімСру Π΅Ρ‚ΠΈΠ»Π΅Π½Ρƒ Π· Π²Ρ–Π½Ρ–Π»Π°Ρ†Π΅Ρ‚Π°Ρ‚ΠΎΠΌ

    Get PDF
    To create a fire retardant coating that can be applied in the hydrocarbon fire, the nanocomposites of the ethylene-vinyl acetate (EVA) copolymer with montmorillonite (MMT), thermally expanded graphite (EG) are synthesized and their structure, physicochemical and thermal properties are studied. Using IR spectroscopy and X-ray phase analysis, it is found that the EVA nanocomposites with montmorillonite and nanographite obtained in solution and melt have the same structure.Thermal-oxidative degradation of the EVA copolymer and nanocomposites on its basis in the temperature range of 100–700 Β°C is investigated. It is proved that nanoclay and nanographite as a part of nanocomposites increase thermal characteristics of the original polymers. The thermal stability of the studied compounds increases in the series: polymer<polymer-EG<polymer-MMT <polymer-MMT-EG. It is shown that the presence of nanoparticles in the polymer matrix reduces the EVA thermal decomposition rate at a temperature above 450 Β°C and increases the coke residue mass after the destruction of the initial EVA copolymer at a temperature of 250 Β°C. The synergistic effect of the MMT/EG mixture on the processes of slowing down the thermal degradation of the EVA copolymer is found.The effect of organomodified montmorillonite and graphite in the EVA nanocomposites on the thermal destruction of the intumescent system of ammonium polyphosphate/melamine/pentaerythritol is studied. The synergistic effect of the mixture of clay and graphite nanoparticles in a hybrid nanocomposite is revealed. Synergism consists in increased fire resistance of metal structures by almost 20 % compared with the coating containing the polymer-nanoclay or polymer-nanographite nanocomposite.Based on the results obtained, the intumescent base of fire retardant paint for steel structures, which is recommended for use to increase the fire-resistance rating of metal in the hydrocarbon fire is developedДля создания ΠΎΠ³Π½Π΅Π·Π°Ρ‰ΠΈΡ‚Π½ΠΎΠ³ΠΎ покрытия, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΎ Π² условиях ΡƒΠ³Π»Π΅Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΏΠΎΠΆΠ°Ρ€Π°, синтСзированы Π½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Ρ‹ сополимСра этилСна с Π²ΠΈΠ½ΠΈΠ»Π°Ρ†Π΅Ρ‚Π°Ρ‚ΠΎΠΌ (EVA) с ΠΌΠΎΠ½Ρ‚ΠΌΠΎΡ€ΠΈΠ»Π»ΠΎΠ½ΠΈΡ‚ΠΎΠΌ (MMT), Ρ‚Π΅Ρ€ΠΌΠΎΡ€Π°ΡΡˆΠΈΡ€Π΅Π½Π½Ρ‹ΠΌ Π³Ρ€Π°Ρ„ΠΈΡ‚ΠΎΠΌ (EG) ΠΈ исслСдованы ΠΈΡ… структура, Ρ„ΠΈΠ·ΠΈΠΊΠΎ-химичСскиС ΠΈ тСрмичСскиС свойства. ΠœΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ ИК-спСктроскопии ΠΈ Ρ€Π΅Π½Ρ‚Π³Π΅Π½ΠΎΡ„Π°Π·ΠΎΠ²ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° установлСно, Ρ‡Ρ‚ΠΎ Π½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Ρ‹ EVA с ΠΌΠΎΠ½Ρ‚ΠΌΠΎΡ€ΠΈΠ»Π»ΠΎΠ½ΠΈΡ‚ΠΎΠΌ ΠΈ Π½Π°Π½ΠΎΠ³Ρ€Π°Ρ„ΠΈΡ‚ΠΎΠΌ, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π² растворС ΠΈ расплавС, ΠΈΠΌΠ΅ΡŽΡ‚ ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ‡Π½ΡƒΡŽ структуру.ИсслСдована Ρ‚Π΅Ρ€ΠΌΠΎΠΎΠΊΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ дСструкция сополимСра EVA ΠΈ Π½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚ΠΎΠ² Π½Π° Π΅Π³ΠΎ основС Π² ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ 100–700 Β° Π‘. Π”ΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ Π½Π°Π½ΠΎΠ³Π»ΠΈΠ½Π° ΠΈ Π½Π°Π½ΠΎΠ³Ρ€Π°Ρ„ΠΈΡ‚ Π² составС Π½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚ΠΎΠ² ΠΏΠΎΠ²Ρ‹ΡˆΠ°ΡŽΡ‚ Ρ‚Π΅ΠΏΠ»ΠΎΠ²Ρ‹Π΅ характСристики исходных ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΎΠ². ВСрмичСская ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΡŒ исслСдованных соСдинСний ΠΏΠΎΠ²Ρ‹ΡˆΠ°Π΅Ρ‚ΡΡ Π² ряду: ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€<ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€-EG <ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€-MMT <ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€-ММВ-EG. Показано, Ρ‡Ρ‚ΠΎ присутствиС Π² ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½ΠΎΠΉ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π΅ наночастиц сниТаСт ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ тСрмичСского распада EVA ΠΏΡ€ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ Π²Ρ‹ΡˆΠ΅ 450 Β°Π‘ ΠΈ ΠΏΠΎΠ²Ρ‹ΡˆΠ°Π΅Ρ‚ массу коксового остатка послС Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ Π½Π°Ρ‡Π°Π»Π° дСструкции исходного сополимСра EVA – 250 Β°Π‘. УстановлСно синСргичСскоС дСйствиС смСси MMT/EG Π½Π° процСссы замСдлСния тСрмичСской Π΄Π΅Π³Ρ€Π°Π΄Π°Ρ†ΠΈΠΈ сополимСра EVA.Π˜Π·ΡƒΡ‡Π΅Π½ΠΎ влияниС ΠΎΡ€Π³Π°Π½ΠΎΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ½Ρ‚ΠΌΠΎΡ€ΠΈΠ»Π»ΠΎΠ½ΠΈΡ‚Π° ΠΈ Π³Ρ€Π°Ρ„ΠΈΡ‚Π° Π² составС Π½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚ΠΎΠ² EVA Π½Π° Ρ‚Π΅Ρ€ΠΌΠΎΠ΄Π΅ΡΡ‚Ρ€ΡƒΠΊΡ†ΠΈΡŽ интумСсцСнтной систСмы полифосфат аммония/ΠΌΠ΅Π»Π°ΠΌΠΈΠ½/пСнтаэритрит. УстановлСно синСргичСскоС дСйствиС смСси наночастиц Π³Π»ΠΈΠ½Ρ‹ ΠΈ Π³Ρ€Π°Ρ„ΠΈΡ‚Π° Π² Π³ΠΈΠ±Ρ€ΠΈΠ΄Π½ΠΎΠΌ Π½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π΅. Π‘ΠΈΠ½Π΅Ρ€Π³ΠΈΠ·ΠΌ Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Π² ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠΈ ΠΏΡ€Π΅Π΄Π΅Π»Π° огнСстойкости мСталличСских конструкций ΠΏΠΎΡ‡Ρ‚ΠΈ Π½Π° 20 % ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с ΠΏΠΎΠΊΡ€Ρ‹Ρ‚ΠΈΠ΅ΠΌ, содСрТащим Π½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€-Π½Π°Π½ΠΎΠ³Π»ΠΈΠ½Π° ΠΈΠ»ΠΈ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€-Π½Π°Π½ΠΎΠ³Ρ€Π°Ρ„ΠΈΡ‚.На основС ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π° интумСсцСнтная основа ΠΎΠ³Π½Π΅Π·Π°Ρ‰ΠΈΡ‚Π½ΠΎΠΉ краски для ΡΡ‚Π°Π»ΡŒΠ½Ρ‹Ρ… конструкций, которая рСкомСндуСтся ΠΊ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡŽ для ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡ ΠΏΡ€Π΅Π΄Π΅Π»Π° огнСстойкости ΠΌΠ΅Ρ‚Π°Π»Π»Π° Π² условиях ΡƒΠ³Π»Π΅Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π½ΠΎΠ³ΠΎ поТараДля створСння вогнСзахисного покриття, Ρ‰ΠΎ ΠΌΠΎΠΆΠ΅ Π±ΡƒΡ‚ΠΈ застосованС Π² ΡƒΠΌΠΎΠ²Π°Ρ… Π²ΡƒΠ³Π»Π΅Π²ΠΎΠ΄Π½Π΅Π²ΠΎΡ— ΠΏΠΎΠΆΠ΅ΠΆΡ–, синтСзовано Π½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚ΠΈ співполімСра Π΅Ρ‚ΠΈΠ»Π΅Π½Ρƒ Π· Π²Ρ–Π½Ρ–Π»Π°Ρ†Π΅Ρ‚Π°Ρ‚ΠΎΠΌ (EVA) Π· ΠΌΠΎΠ½Ρ‚ΠΌΠΎΡ€ΠΈΠ»ΠΎΠ½Ρ–Ρ‚ΠΎΠΌ (MMT), Ρ‚Π΅Ρ€ΠΌΠΎΡ€ΠΎΠ·ΡˆΠΈΡ€Π΅Π½ΠΈΠΌ Π³Ρ€Π°Ρ„Ρ–Ρ‚ΠΎΠΌ (EG) Ρ‚Π° дослідТСно структуру, Ρ„Ρ–Π·ΠΈΠΊΠΎ-Ρ…Ρ–ΠΌΡ–Ρ‡Π½Ρ– Ρ‚Π° Ρ‚Π΅Ρ€ΠΌΡ–Ρ‡Π½Ρ– властивості. ΠœΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ Π†Π§-спСктроскопії Ρ‚Π° Ρ€Π΅Π½Ρ‚Π³Π΅Π½ΠΎΡ„Π°Π·ΠΎΠ²ΠΎΠ³ΠΎ Π°Π½Π°Π»Ρ–Π·Ρƒ встановлСно, Ρ‰ΠΎ Π½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚ΠΈ EVA Π· ΠΌΠΎΠ½Ρ‚ΠΌΠΎΡ€ΠΈΠ»ΠΎΠ½Ρ–Ρ‚ΠΎΠΌ Ρ‚Π° Π³Ρ€Π°Ρ„Ρ–Ρ‚ΠΎΠΌ, ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½Ρ– Π² Ρ€ΠΎΠ·Ρ‡ΠΈΠ½Ρ– Ρ‚Π° Ρ€ΠΎΠ·ΠΏΠ»Π°Π²Ρ–, ΠΌΠ°ΡŽΡ‚ΡŒ Ρ–Π΄Π΅Π½Ρ‚ΠΈΡ‡Π½Ρƒ структуру.ДослідТСна Ρ‚Π΅Ρ€ΠΌΠΎΠΎΠΊΠΈΡΠ»ΡŽΠ²Π°Π»ΡŒΠ½Π° дСструкція співполімСру EVA Ρ‚Π° Π½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Ρ–Π² Π½Π° ΠΉΠΎΠ³ΠΎ основі Π² Ρ–Π½Ρ‚Π΅Ρ€Π²Π°Π»Ρ– Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ 100–700 ΠΎΠ‘. Π”ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ, Ρ‰ΠΎ Π½Π°Π½ΠΎΠ³Π»ΠΈΠ½Π° Ρ‚Π° Π½Π°Π½ΠΎΠ³Ρ€Π°Ρ„Ρ–Ρ‚ Ρƒ складі Π½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Ρ–Π² ΠΏΡ–Π΄Π²ΠΈΡ‰ΡƒΡŽΡ‚ΡŒ Ρ‚Π΅ΠΏΠ»ΠΎΠ²Ρ– характСристики Π²ΠΈΡ…Ρ–Π΄Π½ΠΈΡ… ΠΏΠΎΠ»Ρ–ΠΌΠ΅Ρ€Ρ–Π². Π’Π΅Ρ€ΠΌΡ–Ρ‡Π½Π° ΡΡ‚Π°Π±Ρ–Π»ΡŒΠ½Ρ–ΡΡ‚ΡŒ дослідТСних сполук ΠΏΡ–Π΄Π²ΠΈΡ‰ΡƒΡ”Ρ‚ΡŒΡΡ Ρƒ ряду: ΠΏΠΎΠ»Ρ–ΠΌΠ΅Ρ€ < ΠΏΠΎΠ»Ρ–ΠΌΠ΅Ρ€-EG < ΠΏΠΎΠ»Ρ–ΠΌΠ΅Ρ€-MMT < ΠΏΠΎΠ»Ρ–ΠΌΠ΅Ρ€-ММВ-EG. Показано, Ρ‰ΠΎ ΠΏΡ€ΠΈΡΡƒΡ‚Π½Ρ–ΡΡ‚ΡŒ Π² ΠΏΠΎΠ»Ρ–ΠΌΠ΅Ρ€Π½Ρ–ΠΉ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ– наночастинок Π·Π½ΠΈΠΆΡƒΡ” ΡˆΠ²ΠΈΠ΄ΠΊΡ–ΡΡ‚ΡŒ Ρ‚Π΅Ρ€ΠΌΡ–Ρ‡Π½ΠΎΠ³ΠΎ Ρ€ΠΎΠ·ΠΏΠ°Π΄Ρƒ EVA ΠΏΡ€ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ– Π²ΠΈΡ‰Π΅ Π·Π° 450 ΠΎΠ‘ Ρ‚Π° ΠΏΡ–Π΄Π²ΠΈΡ‰ΡƒΡ” масу коксового Π·Π°Π»ΠΈΡˆΠΊΡƒ після Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ΠΈ ΠΏΠΎΡ‡Π°Ρ‚ΠΊΡƒ дСструкції Π²ΠΈΡ…Ρ–Π΄Π½ΠΎΠ³ΠΎ співполімСру EVA – 250 ΠΎΠ‘. ВстановлСно синСргічну Π΄Ρ–ΡŽ ΡΡƒΠΌΡ–ΡˆΡ– MMT/EG Π½Π° процСси ΡƒΠΏΠΎΠ²Ρ–Π»ΡŒΠ½Π΅Π½Π½Ρ Ρ‚Π΅Ρ€ΠΌΡ–Ρ‡Π½ΠΎΡ— Π΄Π΅Π³Ρ€Π°Π΄Π°Ρ†Ρ–Ρ— співполімСра EVA.Π’ΠΈΠ²Ρ‡Π΅Π½ΠΎ Π²ΠΏΠ»ΠΈΠ² Π³Ρ€Π°Ρ„Ρ–Ρ‚Ρƒ Ρ‚Π° ΠΎΡ€Π³Π°Π½ΠΎΠΌΠΎΠ΄ΠΈΡ„Ρ–ΠΊΠΎΠ²Π°Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ½Ρ‚ΠΌΠΎΡ€ΠΈΠ»ΠΎΠ½Ρ–Ρ‚Ρƒ Ρƒ складі Π½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Ρ–Π² EVA Π½Π° Ρ‚Π΅Ρ€ΠΌΠΎΠ΄Π΅ΡΡ‚Ρ€ΡƒΠΊΡ†Ρ–ΡŽ інтумСсцСнтної систСми поліфосфат Π°ΠΌΠΎΠ½Ρ–ΡŽ/ΠΌΠ΅Π»Π°ΠΌΡ–Π½/ΠΏΠ΅Π½Ρ‚Π°Π΅Ρ€ΠΈΡ‚Ρ€ΠΈΡ‚. ВстановлСна синСргічна дія ΡΡƒΠΌΡ–ΡˆΡ– наночастинок Π³Π»ΠΈΠ½ΠΈ Ρ‚Π° Π³Ρ€Π°Ρ„Ρ–Ρ‚Ρƒ Π² Π³Ρ–Π±Ρ€ΠΈΠ΄Π½ΠΎΠΌΡƒ Π½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Ρ–. Π‘ΠΈΠ½Π΅Ρ€Π³Ρ–Π·ΠΌ полягає Ρƒ ΠΏΡ–Π΄Π²ΠΈΡ‰Π΅Π½Π½Ρ– ΠΌΠ΅ΠΆΡ– вогнСстійкості ΠΌΠ΅Ρ‚Π°Π»Π΅Π²ΠΈΡ… конструкцій ΠΌΠ°ΠΉΠΆΠ΅ Π½Π° 20 % Π² порівнянні Π· покриттям, Ρ‰ΠΎ ΠΌΡ–ΡΡ‚ΠΈΡ‚ΡŒ Π½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚ ΠΏΠΎΠ»Ρ–ΠΌΠ΅Ρ€/Π½Π°Π½ΠΎΠ³Π»ΠΈΠ½Π° Ρ‡ΠΈ ΠΏΠΎΠ»Ρ–ΠΌΠ΅Ρ€/Π½Π°Π½ΠΎΠ³Ρ€Π°Ρ„Ρ–Ρ‚.На основі ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½ΠΈΡ… Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ–Π² Ρ€ΠΎΠ·Ρ€ΠΎΠ±Π»Π΅Π½ΠΎ інтумСсцСнтну основу вогнСзахисної Ρ„Π°Ρ€Π±ΠΈ для сталСвих конструкцій, яка Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄ΡƒΡ”Ρ‚ΡŒΡΡ Π΄ΠΎ застосування для підвищСння ΠΌΠ΅ΠΆΡ– вогнСстійкості ΠΌΠ΅Ρ‚Π°Π»Ρƒ Π² ΡƒΠΌΠΎΠ²Π°Ρ… Π²ΡƒΠ³Π»Π΅Π²ΠΎΠ΄Π½Π΅Π²ΠΎΡ— ΠΏΠΎΠΆΠ΅ΠΆ

    ВизначСння Ρ‚Π΅Ρ€ΠΌΡ–Ρ‡Π½ΠΈΡ… Ρ‚Π° вогнСзахисних властивостСй Π½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Ρ–Π² співполімСру Π΅Ρ‚ΠΈΠ»Π΅Π½Ρƒ Π· Π²Ρ–Π½Ρ–Π»Π°Ρ†Π΅Ρ‚Π°Ρ‚ΠΎΠΌ

    Get PDF
    To create a fire retardant coating that can be applied in the hydrocarbon fire, the nanocomposites of the ethylene-vinyl acetate (EVA) copolymer with montmorillonite (MMT), thermally expanded graphite (EG) are synthesized and their structure, physicochemical and thermal properties are studied. Using IR spectroscopy and X-ray phase analysis, it is found that the EVA nanocomposites with montmorillonite and nanographite obtained in solution and melt have the same structure.Thermal-oxidative degradation of the EVA copolymer and nanocomposites on its basis in the temperature range of 100–700 Β°C is investigated. It is proved that nanoclay and nanographite as a part of nanocomposites increase thermal characteristics of the original polymers. The thermal stability of the studied compounds increases in the series: polymer<polymer-EG<polymer-MMT <polymer-MMT-EG. It is shown that the presence of nanoparticles in the polymer matrix reduces the EVA thermal decomposition rate at a temperature above 450 Β°C and increases the coke residue mass after the destruction of the initial EVA copolymer at a temperature of 250 Β°C. The synergistic effect of the MMT/EG mixture on the processes of slowing down the thermal degradation of the EVA copolymer is found.The effect of organomodified montmorillonite and graphite in the EVA nanocomposites on the thermal destruction of the intumescent system of ammonium polyphosphate/melamine/pentaerythritol is studied. The synergistic effect of the mixture of clay and graphite nanoparticles in a hybrid nanocomposite is revealed. Synergism consists in increased fire resistance of metal structures by almost 20 % compared with the coating containing the polymer-nanoclay or polymer-nanographite nanocomposite.Based on the results obtained, the intumescent base of fire retardant paint for steel structures, which is recommended for use to increase the fire-resistance rating of metal in the hydrocarbon fire is developedДля создания ΠΎΠ³Π½Π΅Π·Π°Ρ‰ΠΈΡ‚Π½ΠΎΠ³ΠΎ покрытия, ΠΊΠΎΡ‚ΠΎΡ€ΠΎΠ΅ ΠΌΠΎΠΆΠ΅Ρ‚ Π±Ρ‹Ρ‚ΡŒ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΎ Π² условиях ΡƒΠ³Π»Π΅Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π½ΠΎΠ³ΠΎ ΠΏΠΎΠΆΠ°Ρ€Π°, синтСзированы Π½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Ρ‹ сополимСра этилСна с Π²ΠΈΠ½ΠΈΠ»Π°Ρ†Π΅Ρ‚Π°Ρ‚ΠΎΠΌ (EVA) с ΠΌΠΎΠ½Ρ‚ΠΌΠΎΡ€ΠΈΠ»Π»ΠΎΠ½ΠΈΡ‚ΠΎΠΌ (MMT), Ρ‚Π΅Ρ€ΠΌΠΎΡ€Π°ΡΡˆΠΈΡ€Π΅Π½Π½Ρ‹ΠΌ Π³Ρ€Π°Ρ„ΠΈΡ‚ΠΎΠΌ (EG) ΠΈ исслСдованы ΠΈΡ… структура, Ρ„ΠΈΠ·ΠΈΠΊΠΎ-химичСскиС ΠΈ тСрмичСскиС свойства. ΠœΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ ИК-спСктроскопии ΠΈ Ρ€Π΅Π½Ρ‚Π³Π΅Π½ΠΎΡ„Π°Π·ΠΎΠ²ΠΎΠ³ΠΎ Π°Π½Π°Π»ΠΈΠ·Π° установлСно, Ρ‡Ρ‚ΠΎ Π½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Ρ‹ EVA с ΠΌΠΎΠ½Ρ‚ΠΌΠΎΡ€ΠΈΠ»Π»ΠΎΠ½ΠΈΡ‚ΠΎΠΌ ΠΈ Π½Π°Π½ΠΎΠ³Ρ€Π°Ρ„ΠΈΡ‚ΠΎΠΌ, ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Π΅ Π² растворС ΠΈ расплавС, ΠΈΠΌΠ΅ΡŽΡ‚ ΠΈΠ΄Π΅Π½Ρ‚ΠΈΡ‡Π½ΡƒΡŽ структуру.ИсслСдована Ρ‚Π΅Ρ€ΠΌΠΎΠΎΠΊΠΈΡΠ»ΠΈΡ‚Π΅Π»ΡŒΠ½Π°Ρ дСструкция сополимСра EVA ΠΈ Π½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚ΠΎΠ² Π½Π° Π΅Π³ΠΎ основС Π² ΠΈΠ½Ρ‚Π΅Ρ€Π²Π°Π»Π΅ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ 100–700 Β° Π‘. Π”ΠΎΠΊΠ°Π·Π°Π½ΠΎ, Ρ‡Ρ‚ΠΎ Π½Π°Π½ΠΎΠ³Π»ΠΈΠ½Π° ΠΈ Π½Π°Π½ΠΎΠ³Ρ€Π°Ρ„ΠΈΡ‚ Π² составС Π½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚ΠΎΠ² ΠΏΠΎΠ²Ρ‹ΡˆΠ°ΡŽΡ‚ Ρ‚Π΅ΠΏΠ»ΠΎΠ²Ρ‹Π΅ характСристики исходных ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€ΠΎΠ². ВСрмичСская ΡΡ‚Π°Π±ΠΈΠ»ΡŒΠ½ΠΎΡΡ‚ΡŒ исслСдованных соСдинСний ΠΏΠΎΠ²Ρ‹ΡˆΠ°Π΅Ρ‚ΡΡ Π² ряду: ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€<ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€-EG <ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€-MMT <ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€-ММВ-EG. Показано, Ρ‡Ρ‚ΠΎ присутствиС Π² ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€Π½ΠΎΠΉ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Π΅ наночастиц сниТаСт ΡΠΊΠΎΡ€ΠΎΡΡ‚ΡŒ тСрмичСского распада EVA ΠΏΡ€ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Π΅ Π²Ρ‹ΡˆΠ΅ 450 Β°Π‘ ΠΈ ΠΏΠΎΠ²Ρ‹ΡˆΠ°Π΅Ρ‚ массу коксового остатка послС Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ‹ Π½Π°Ρ‡Π°Π»Π° дСструкции исходного сополимСра EVA – 250 Β°Π‘. УстановлСно синСргичСскоС дСйствиС смСси MMT/EG Π½Π° процСссы замСдлСния тСрмичСской Π΄Π΅Π³Ρ€Π°Π΄Π°Ρ†ΠΈΠΈ сополимСра EVA.Π˜Π·ΡƒΡ‡Π΅Π½ΠΎ влияниС ΠΎΡ€Π³Π°Π½ΠΎΠΌΠΎΠ΄ΠΈΡ„ΠΈΡ†ΠΈΡ€ΠΎΠ²Π°Π½Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ½Ρ‚ΠΌΠΎΡ€ΠΈΠ»Π»ΠΎΠ½ΠΈΡ‚Π° ΠΈ Π³Ρ€Π°Ρ„ΠΈΡ‚Π° Π² составС Π½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚ΠΎΠ² EVA Π½Π° Ρ‚Π΅Ρ€ΠΌΠΎΠ΄Π΅ΡΡ‚Ρ€ΡƒΠΊΡ†ΠΈΡŽ интумСсцСнтной систСмы полифосфат аммония/ΠΌΠ΅Π»Π°ΠΌΠΈΠ½/пСнтаэритрит. УстановлСно синСргичСскоС дСйствиС смСси наночастиц Π³Π»ΠΈΠ½Ρ‹ ΠΈ Π³Ρ€Π°Ρ„ΠΈΡ‚Π° Π² Π³ΠΈΠ±Ρ€ΠΈΠ΄Π½ΠΎΠΌ Π½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Π΅. Π‘ΠΈΠ½Π΅Ρ€Π³ΠΈΠ·ΠΌ Π·Π°ΠΊΠ»ΡŽΡ‡Π°Π΅Ρ‚ΡΡ Π² ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΠΈ ΠΏΡ€Π΅Π΄Π΅Π»Π° огнСстойкости мСталличСских конструкций ΠΏΠΎΡ‡Ρ‚ΠΈ Π½Π° 20 % ΠΏΠΎ ΡΡ€Π°Π²Π½Π΅Π½ΠΈΡŽ с ΠΏΠΎΠΊΡ€Ρ‹Ρ‚ΠΈΠ΅ΠΌ, содСрТащим Π½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€-Π½Π°Π½ΠΎΠ³Π»ΠΈΠ½Π° ΠΈΠ»ΠΈ ΠΏΠΎΠ»ΠΈΠΌΠ΅Ρ€-Π½Π°Π½ΠΎΠ³Ρ€Π°Ρ„ΠΈΡ‚.На основС ΠΏΠΎΠ»ΡƒΡ‡Π΅Π½Π½Ρ‹Ρ… Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚ΠΎΠ² Ρ€Π°Π·Ρ€Π°Π±ΠΎΡ‚Π°Π½Π° интумСсцСнтная основа ΠΎΠ³Π½Π΅Π·Π°Ρ‰ΠΈΡ‚Π½ΠΎΠΉ краски для ΡΡ‚Π°Π»ΡŒΠ½Ρ‹Ρ… конструкций, которая рСкомСндуСтся ΠΊ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡŽ для ΠΏΠΎΠ²Ρ‹ΡˆΠ΅Π½ΠΈΡ ΠΏΡ€Π΅Π΄Π΅Π»Π° огнСстойкости ΠΌΠ΅Ρ‚Π°Π»Π»Π° Π² условиях ΡƒΠ³Π»Π΅Π²ΠΎΠ΄ΠΎΡ€ΠΎΠ΄Π½ΠΎΠ³ΠΎ поТараДля створСння вогнСзахисного покриття, Ρ‰ΠΎ ΠΌΠΎΠΆΠ΅ Π±ΡƒΡ‚ΠΈ застосованС Π² ΡƒΠΌΠΎΠ²Π°Ρ… Π²ΡƒΠ³Π»Π΅Π²ΠΎΠ΄Π½Π΅Π²ΠΎΡ— ΠΏΠΎΠΆΠ΅ΠΆΡ–, синтСзовано Π½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚ΠΈ співполімСра Π΅Ρ‚ΠΈΠ»Π΅Π½Ρƒ Π· Π²Ρ–Π½Ρ–Π»Π°Ρ†Π΅Ρ‚Π°Ρ‚ΠΎΠΌ (EVA) Π· ΠΌΠΎΠ½Ρ‚ΠΌΠΎΡ€ΠΈΠ»ΠΎΠ½Ρ–Ρ‚ΠΎΠΌ (MMT), Ρ‚Π΅Ρ€ΠΌΠΎΡ€ΠΎΠ·ΡˆΠΈΡ€Π΅Π½ΠΈΠΌ Π³Ρ€Π°Ρ„Ρ–Ρ‚ΠΎΠΌ (EG) Ρ‚Π° дослідТСно структуру, Ρ„Ρ–Π·ΠΈΠΊΠΎ-Ρ…Ρ–ΠΌΡ–Ρ‡Π½Ρ– Ρ‚Π° Ρ‚Π΅Ρ€ΠΌΡ–Ρ‡Π½Ρ– властивості. ΠœΠ΅Ρ‚ΠΎΠ΄Π°ΠΌΠΈ Π†Π§-спСктроскопії Ρ‚Π° Ρ€Π΅Π½Ρ‚Π³Π΅Π½ΠΎΡ„Π°Π·ΠΎΠ²ΠΎΠ³ΠΎ Π°Π½Π°Π»Ρ–Π·Ρƒ встановлСно, Ρ‰ΠΎ Π½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚ΠΈ EVA Π· ΠΌΠΎΠ½Ρ‚ΠΌΠΎΡ€ΠΈΠ»ΠΎΠ½Ρ–Ρ‚ΠΎΠΌ Ρ‚Π° Π³Ρ€Π°Ρ„Ρ–Ρ‚ΠΎΠΌ, ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½Ρ– Π² Ρ€ΠΎΠ·Ρ‡ΠΈΠ½Ρ– Ρ‚Π° Ρ€ΠΎΠ·ΠΏΠ»Π°Π²Ρ–, ΠΌΠ°ΡŽΡ‚ΡŒ Ρ–Π΄Π΅Π½Ρ‚ΠΈΡ‡Π½Ρƒ структуру.ДослідТСна Ρ‚Π΅Ρ€ΠΌΠΎΠΎΠΊΠΈΡΠ»ΡŽΠ²Π°Π»ΡŒΠ½Π° дСструкція співполімСру EVA Ρ‚Π° Π½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Ρ–Π² Π½Π° ΠΉΠΎΠ³ΠΎ основі Π² Ρ–Π½Ρ‚Π΅Ρ€Π²Π°Π»Ρ– Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ 100–700 ΠΎΠ‘. Π”ΠΎΠ²Π΅Π΄Π΅Π½ΠΎ, Ρ‰ΠΎ Π½Π°Π½ΠΎΠ³Π»ΠΈΠ½Π° Ρ‚Π° Π½Π°Π½ΠΎΠ³Ρ€Π°Ρ„Ρ–Ρ‚ Ρƒ складі Π½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Ρ–Π² ΠΏΡ–Π΄Π²ΠΈΡ‰ΡƒΡŽΡ‚ΡŒ Ρ‚Π΅ΠΏΠ»ΠΎΠ²Ρ– характСристики Π²ΠΈΡ…Ρ–Π΄Π½ΠΈΡ… ΠΏΠΎΠ»Ρ–ΠΌΠ΅Ρ€Ρ–Π². Π’Π΅Ρ€ΠΌΡ–Ρ‡Π½Π° ΡΡ‚Π°Π±Ρ–Π»ΡŒΠ½Ρ–ΡΡ‚ΡŒ дослідТСних сполук ΠΏΡ–Π΄Π²ΠΈΡ‰ΡƒΡ”Ρ‚ΡŒΡΡ Ρƒ ряду: ΠΏΠΎΠ»Ρ–ΠΌΠ΅Ρ€ < ΠΏΠΎΠ»Ρ–ΠΌΠ΅Ρ€-EG < ΠΏΠΎΠ»Ρ–ΠΌΠ΅Ρ€-MMT < ΠΏΠΎΠ»Ρ–ΠΌΠ΅Ρ€-ММВ-EG. Показано, Ρ‰ΠΎ ΠΏΡ€ΠΈΡΡƒΡ‚Π½Ρ–ΡΡ‚ΡŒ Π² ΠΏΠΎΠ»Ρ–ΠΌΠ΅Ρ€Π½Ρ–ΠΉ ΠΌΠ°Ρ‚Ρ€ΠΈΡ†Ρ– наночастинок Π·Π½ΠΈΠΆΡƒΡ” ΡˆΠ²ΠΈΠ΄ΠΊΡ–ΡΡ‚ΡŒ Ρ‚Π΅Ρ€ΠΌΡ–Ρ‡Π½ΠΎΠ³ΠΎ Ρ€ΠΎΠ·ΠΏΠ°Π΄Ρƒ EVA ΠΏΡ€ΠΈ Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€Ρ– Π²ΠΈΡ‰Π΅ Π·Π° 450 ΠΎΠ‘ Ρ‚Π° ΠΏΡ–Π΄Π²ΠΈΡ‰ΡƒΡ” масу коксового Π·Π°Π»ΠΈΡˆΠΊΡƒ після Ρ‚Π΅ΠΌΠΏΠ΅Ρ€Π°Ρ‚ΡƒΡ€ΠΈ ΠΏΠΎΡ‡Π°Ρ‚ΠΊΡƒ дСструкції Π²ΠΈΡ…Ρ–Π΄Π½ΠΎΠ³ΠΎ співполімСру EVA – 250 ΠΎΠ‘. ВстановлСно синСргічну Π΄Ρ–ΡŽ ΡΡƒΠΌΡ–ΡˆΡ– MMT/EG Π½Π° процСси ΡƒΠΏΠΎΠ²Ρ–Π»ΡŒΠ½Π΅Π½Π½Ρ Ρ‚Π΅Ρ€ΠΌΡ–Ρ‡Π½ΠΎΡ— Π΄Π΅Π³Ρ€Π°Π΄Π°Ρ†Ρ–Ρ— співполімСра EVA.Π’ΠΈΠ²Ρ‡Π΅Π½ΠΎ Π²ΠΏΠ»ΠΈΠ² Π³Ρ€Π°Ρ„Ρ–Ρ‚Ρƒ Ρ‚Π° ΠΎΡ€Π³Π°Π½ΠΎΠΌΠΎΠ΄ΠΈΡ„Ρ–ΠΊΠΎΠ²Π°Π½ΠΎΠ³ΠΎ ΠΌΠΎΠ½Ρ‚ΠΌΠΎΡ€ΠΈΠ»ΠΎΠ½Ρ–Ρ‚Ρƒ Ρƒ складі Π½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Ρ–Π² EVA Π½Π° Ρ‚Π΅Ρ€ΠΌΠΎΠ΄Π΅ΡΡ‚Ρ€ΡƒΠΊΡ†Ρ–ΡŽ інтумСсцСнтної систСми поліфосфат Π°ΠΌΠΎΠ½Ρ–ΡŽ/ΠΌΠ΅Π»Π°ΠΌΡ–Π½/ΠΏΠ΅Π½Ρ‚Π°Π΅Ρ€ΠΈΡ‚Ρ€ΠΈΡ‚. ВстановлСна синСргічна дія ΡΡƒΠΌΡ–ΡˆΡ– наночастинок Π³Π»ΠΈΠ½ΠΈ Ρ‚Π° Π³Ρ€Π°Ρ„Ρ–Ρ‚Ρƒ Π² Π³Ρ–Π±Ρ€ΠΈΠ΄Π½ΠΎΠΌΡƒ Π½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚Ρ–. Π‘ΠΈΠ½Π΅Ρ€Π³Ρ–Π·ΠΌ полягає Ρƒ ΠΏΡ–Π΄Π²ΠΈΡ‰Π΅Π½Π½Ρ– ΠΌΠ΅ΠΆΡ– вогнСстійкості ΠΌΠ΅Ρ‚Π°Π»Π΅Π²ΠΈΡ… конструкцій ΠΌΠ°ΠΉΠΆΠ΅ Π½Π° 20 % Π² порівнянні Π· покриттям, Ρ‰ΠΎ ΠΌΡ–ΡΡ‚ΠΈΡ‚ΡŒ Π½Π°Π½ΠΎΠΊΠΎΠΌΠΏΠΎΠ·ΠΈΡ‚ ΠΏΠΎΠ»Ρ–ΠΌΠ΅Ρ€/Π½Π°Π½ΠΎΠ³Π»ΠΈΠ½Π° Ρ‡ΠΈ ΠΏΠΎΠ»Ρ–ΠΌΠ΅Ρ€/Π½Π°Π½ΠΎΠ³Ρ€Π°Ρ„Ρ–Ρ‚.На основі ΠΎΡ‚Ρ€ΠΈΠΌΠ°Π½ΠΈΡ… Ρ€Π΅Π·ΡƒΠ»ΡŒΡ‚Π°Ρ‚Ρ–Π² Ρ€ΠΎΠ·Ρ€ΠΎΠ±Π»Π΅Π½ΠΎ інтумСсцСнтну основу вогнСзахисної Ρ„Π°Ρ€Π±ΠΈ для сталСвих конструкцій, яка Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄ΡƒΡ”Ρ‚ΡŒΡΡ Π΄ΠΎ застосування для підвищСння ΠΌΠ΅ΠΆΡ– вогнСстійкості ΠΌΠ΅Ρ‚Π°Π»Ρƒ Π² ΡƒΠΌΠΎΠ²Π°Ρ… Π²ΡƒΠ³Π»Π΅Π²ΠΎΠ΄Π½Π΅Π²ΠΎΡ— ΠΏΠΎΠΆΠ΅ΠΆ

    Nikolay N. Petrov: Ethos of a Scientist and a Doctor

    Get PDF
    Aim. In this work, the authors set out to perform a historical analysis of Nikolay Petrov’s life journey and scientific work, as well as to demonstrate the importance of the Kuban period in his formation as an individual, a scientist and as a founder of domestic medical deontology.Materials and methods. In this study, the authors used archival documents; works of Nikolay Petrov; as well as the following methods: historical-descriptive, comparative-historical, problem-chronological, biographical along with the method of monographic description.Results. The life and professional journey of Nikolay Petrov can be divided into several periods, each of them playing an important role in his formation as an individual and as a scientist. The fi rst period (β€˜St Petersburg period’) covers his brilliant upbringing, education at the Military Medical Academy in Saint Petersburg, work as a medical resident at the Surgery Department of the Academy, as well as the publication of his first scientific works and the defence of the doctoral thesis in medicine. During the second period (β€˜abroad period’), Nikolay Petrov completed advanced training at the Pasteur Institute and worked at the clinics of Switzerland, Austria and Germany. The third period (β€˜teaching period’) covers the time when Nikolay Petrov was simultaneously working as a surgeon and a teacher at the Military Medical Academy; his fundamental works on surgery and oncology were published. The forth β€˜military period’ coincided with the years of the First World War when Nikolay Petrov worked as a surgeon at the hospitals of the Russian Red Cross Society while continuing his research. The fifth period (β€˜Kuban period’) coincided with the years of revolutionary upheavals, civil war and moving to Kuban. In 1917–1922 Nikolay Petrov had to choose between emigration and his motherland. He stayed true to his profession and his homeland. Nikolay Petrov devoted himself to serving the β€˜new’ country, actively participated in the organisation of the Kuban Medical University and wrote a number of works on surgery, including the first work on medical deontology in the country. The sixth period is called β€˜return to St Petersburg’ where in 1925 Nikolay Petrov organised the Oncology Department at the Mechnikov hospital, which under his guidance became the first research institute for oncology in our country. This period was marked by the recognition of his talent as a doctor and a scientist by the public and government.Conclusion. Nikolay Petrovβ€˜s ethos as a scientist and a doctor was formed under the influence of his challenging life journey, with the Kuban period being a turning point in his life

    Efficiency of using inverter power plants as part of multifunctional energy technology complexes

    No full text
    A method has been developed for a comprehensive multi-criteria assessment of the efficiency of using inverter power plants as part of multifunctional energy-technological complexes with technical solutions aimed at reducing the negative consequences of the internal combustion engine operation with an optimal from the point of view of fuel efficiency speed. The method includes: synthesis of the optimal engine speed control algorithm, determination of the complex operating modes under operating conditions, assessment of changes in fuel consumption and harmful substances emissions with exhaust gases and resource consumption rate when the engine is switched to the operating mode with the optimal speed, complex technical and economic assessment of the inverter power plants efficiency. On the example of an inverter power plant with a capacity of 100 kW, the need to apply the method is proved. It was found that the engine operation with the optimal from the point of view of fuel efficiency speed and without additional design measures entails an increase in the damage accumulation rate by 1.7-2.1 times and therefore is economically inexpedient, despite a decrease in fuel consumption by 1% or more. It was found that a decrease in the compression ratio with a simultaneous increase in the boost pressure makes it possible to increase the engine resource up to a functional failure due to damage accumulation by 43% and to a parametric failure due to wear by 32%, while the operating costs of the inverter power plant will decrease by 3.7% relative to the base (no changes) power plants. The emission of soot particles will decrease by about 2 times, nitrogen oxides - by 2%, hydrocarbons - almost to zero

    Corrosion Behavior and Biocompatibility of Hot-Extruded Mg–Zn–Ga–(Y) Biodegradable Alloys

    No full text
    Fixation screws and other temporary magnesium alloy fixation devices are used in orthopedic practice because of their biodegradability, biocompatibility and acceptable biodegradation rates. The substitution of dissolving implant by tissues during the healing process is one of the main requirements for biodegradable implants. Previously, clinical tests showed the effectiveness of Ga ions on bone tissue regeneration. This work is the first systematic study on the corrosion rate and biocompatibility of Mg–Zn–Ga–(Y) alloys prepared by hot extrusion, where Ga is an additional major alloying element, efficient as a bone-resorption inhibitor. Most investigated alloys have a low corrosion rate in Hanks’ solution close to ~0.2 mm/year. No cytotoxic effects of Mg–2Zn–2Ga (wt.%) alloy on MG63 cells were observed. Thus, considering the high corrosion resistance and good biocompatibility, the Mg–2Zn–2Ga alloy is possible for applications in osteosynthesis implants with improved bone tissue regeneration ability

    Biocatalysts based on papain associates with chitosan nanoparticles

    No full text
    The research purpose was to develop and study biocatalysts based on papain associates with chitosan nanoparticles. We obtained medium and high molecular weight chitosan nanoparticles, both with and without ascorbic acid . When the papainna-noparticles complexes with ascorbic acid were formed, the catalytic activity of the enzyme increased by 3 % for medium molecular weight chitosan and by 16 % for high molecular weight chitosan. After 168 hours of incubation in 0.05 M of Tris-HCl buffer (pH 7.5) at 37 Β°C, the free enzyme retained 15 % of its catalytic activity, whereas its associates with chitosan nanoparticles exhibited ~ 30 %. The papain complex with chitosan nanoparticles and ascorbic acid exhibited 40 % of the enzyme catalytic activity. We simulated the bonds and interactions within the chitosan-ascorbic acid-papain complex. The proposed biocatalysts have high prospects for effective use in cosmetology, biomedicine, and pharmacy
    corecore