41 research outputs found

    Electrochemical study of doped LiFePO4 as a cathode material for lithium-ion battery

    Get PDF
    LiFe1-xVxPO4/C (x= 0.01, 0.03, 0.05, 0.1) composites had been obtained by sol-gel method and characterized with the use of the XRD-analysis, SEM and charge/discharge tests. The doping was shown to result in decrease of electrode polarization, and correspondingly in capacity increase at high C-rates

    Photon shot-noise limited transient absorption soft X-ray spectroscopy at the European XFEL

    Get PDF
    Femtosecond transient soft X-ray Absorption Spectroscopy (XAS) is a very promising technique that can be employed at X-ray Free Electron Lasers (FELs) to investigate out-of-equilibrium dynamics for material and energy research. Here we present a dedicated setup for soft X-rays available at the Spectroscopy & Coherent Scattering (SCS) instrument at the European X-ray Free Electron Laser (EuXFEL). It consists of a beam-splitting off-axis zone plate (BOZ) used in transmission to create three copies of the incoming beam, which are used to measure the transmitted intensity through the excited and unexcited sample, as well as to monitor the incoming intensity. Since these three intensity signals are detected shot-by-shot and simultaneously, this setup allows normalized shot-by-shot analysis of the transmission. For photon detection, the DSSC imaging detector, which is capable of recording up to 800 images at 4.5 MHz frame rate during the FEL burst, is employed and allows approaching the photon shot-noise limit. We review the setup and its capabilities, as well as the online and offline analysis tools provided to users.Comment: 11 figure

    Modern Technologies of Hydrogen Production

    No full text
    Transitioning to energy-saving and renewable energy sources is impossible without accelerated development of hydrogen energy and hydrogen technologies. This review summarizes the state-of-the-art and recent advances of various hydrogen production processes, including but not limited to thermochemical and electrolytic processes. Their opportunities and limitations, operating conditions, and catalysts are discussed. Nowadays, most hydrogen is still produced by steam reforming of methane, its partial oxidation, or coal gasification. Considerable attention is also paid to natural gas pyrolysis. However, hydrogen produced using these technologies has a lot of impurities and needs additional purification. A series of technologies for hydrogen purification, including its filtration through palladium alloy membranes, and membrane catalysis, allowing hydrogen production and purification in one stage, are discussed. The main way to produce carbon-free hydrogen is water electrolysis using low-cost energy from nuclear or renewable sources. Both conventional and novel methods of hydrogen storage and transportation, which are an important part of the hydrogen economy, are reviewed. Biohydrogen production technologies are also discussed. Finally, prospects for further work in this field are provided. This review will be useful to researchers and manufacturers working in this field

    NASICON-Type Li<sub>1+x</sub>Al<sub>x</sub>Zr<sub>y</sub>Ti<sub>2−x−y</sub>(PO<sub>4</sub>)<sub>3</sub> Solid Electrolytes: Effect of Al, Zr Co-Doping and Synthesis Method

    No full text
    Replacing liquid electrolytes with solid-state conductors is one of the key challenges to increasing the safety and energy density of next-generation Li secondary batteries. In this work, the NASICON-type Li1+xAlxZryTi2−x−y(PO4)3 with 0 ≀ x, y ≀ 0.2 solid electrolytes were synthesized using solid-state and sol-gel techniques at various sintering temperatures (800, 900, and 1000 °C). Their morphology and conducting properties were studied to determine the optimal dopant content and synthesis method. Li1.2Al0.2Zr0.1Ti1.7(PO4)3 and Li1.1Al0.1Zr0.2Ti1.7(PO4)3 prepared at 900 °C using a solid-state reaction exhibit the highest total conductivity at 25 °C (7.9 × 10−4 and 5.4 × 10−4 S cm−1, respectively), which is due to the optimal size of lithium transport channels, as well as the high density of these samples. The potential profile of Li|Li1.2Al0.2Zr0.1Ti1.7(PO4)3|Li cells was retained during cycling at a current density of 0.05 mA cm−2 for 100 h, indicating a high interfacial Li metal/electrolyte stability

    Solid Electrolytes Based on NASICON-Structured Phosphates for Lithium Metal Batteries

    No full text
    All-solid-state lithium batteries are a promising alternative to commercially available lithium-ion batteries due to their ability to achieve high energy density, safety, and compactness. Electrolytes are key components of all-solid-state batteries, as they are crucial in determining the batteries’ efficiency. Herein, the structure of LiM2(PO4)3 (M = Ti, Ge, Zr) and lithium-ion migration mechanisms are introduced as well as different synthetic routes and doping (co-doping), and their influence on conductivity is discussed. The effective methods of reducing electrolyte/electrode interface resistance and improving ion-conducting properties are summarized. In addition, different polymer/NASICON composites are considered. The challenges and prospects of practical applications of NASICON-type lithium phosphates as electrolytes for all-solid-state batteries are discussed

    Sodium Rechargeable Batteries with Electrolytes Based on Nafion Membranes Intercalated by Mixtures of Organic Solvents

    No full text
    The possibilities of manufacturing batteries with Nafion 117 membranes in the Na+-form intercalated by mixtures of non-aqueous organic solvents used both as an electrolyte, separator, and binder were investigated. Electrochemical stability of various organic solvent mixtures based on N,N-dimethylacetamide, ethylene carbonate, propylene carbonate, and tetrahydrofuran were characterized. It was shown that a sodium battery based on a Nafion-Na membrane intercalated by mixture of ethylene carbonate and propylene carbonate with a Na3V1.9Fe0.1(PO4)3/C positive electrode is characterized by a discharge capacity of &#8776;110 mAh&#183;g&#8722;1 (current density of 10 mA&#183;g&#8722;1) at room temperature and shows the ability to cycle without degradation during 20 cycles. Batteries with Nafion membrane electrolytes, containing N,N-dimethylacetamide, were characterized using capacity fading during cycling, which is due to the interaction of N,N-dimethylacetamide and a negative sodium electrode

    Electrochemical Properties of LiFePO<sub>4</sub> Cathodes: The Effect of Carbon Additives

    No full text
    The influence of different conductive additives (carbon nanofibers (CNFs), carbon nanoplatelets, and pyrolytic carbon from sucrose (Sucr) or polyvinylidene fluoride) on the morphology, electron conductivity, and electrochemical performance of LiFePO4-based cathodes was investigated to develop the most efficient strategy for the fabrication of high-rate cathodes. Pyrolytic carbon effectively prevents the growth of LiFePO4 grains and provides contact between them, CNFs provide fast long-range conductive pathways, while carbon nanoplatelets can be embedded in carbon coatings as high-conductive “points” which enhance the rate capability and decrease the capacity fading of LFP. The LiFePO4/CSucr/CNF showed better performance than the other cathodes due to the synergy of the high-conductive CNF network (the electronic conductivity was 1.3 × 10−2 S/cm) and the shorter Li+ ion path (the lithium-ion diffusion coefficient was 2.1 × 10−11 cm2/s). It is shown that the formation of composites based on LFP and carbon nanomaterials via mortar grinding is a more promising strategy for electrode material manufacturing than ball milling

    Composite Cathodes Based on Lithium-Iron Phosphate and N-Doped Carbon Materials

    No full text
    The effect of different nitrogen-doped carbon additives (carbon coating from polyaniline, N-doped carbon nanotubes, and N-doped carbon nanoparticles) on electrochemical performance of nanocomposites based on the olivine-type LiFePO4 was investigated. Prepared materials were characterized by XRD, SEM, TGA-MS, CHNS-analysis, IR-, Raman, and impedance spectroscopies. Polyaniline deposition on the LiFePO4 precursor with following annealing lead to the formation of a LiFePO4/C nanocomposite with a carbon coating doped with nitrogen. Due to nitrogen atoms presence in carbon coating, the LiFePO4/N-doped carbon nanocomposites showed enhanced conductivity and C-rate capability. The discharge capacities of the synthesized materials in LIBs were close to the theoretical value at 0.1 C and retained high values with increasing current density. At high C-rates, the best results were obtained for a more dispersed LiFePO4/C composite with carbon coating prepared from polyaniline previously in situ deposited on LiFePO4 precursor particles. Its discharge capacity reached 96, 84, 73, and 47 mAh g&minus;1 at 5, 10, 20, and 60 C-rates, respectively

    Potentiometric Sensor Arrays Based on Hybrid PFSA/CNTs Membranes for the Analysis of UV-Degraded Drugs

    No full text
    The degradation of drugs is a substantial problem since it affects the safety and effectiveness of pharmaceutical products, as well as their influence on the environment. A novel system of three potentiometric cross-sensitive sensors (using the Donnan potential (DP) as an analytical signal) and a reference electrode was developed for the analysis of UV-degraded sulfacetamide drugs. The membranes for DP-sensors were prepared by a casting procedure from a dispersion of perfluorosulfonic acid (PFSA) polymer, containing carbon nanotubes (CNTs), whose surface was preliminarily modified with carboxyl, sulfonic acid, or (3-aminopropyl)trimethoxysilanol groups. A correlation between the sorption and transport properties of the hybrid membranes and cross-sensitivity of the DP-sensor to sulfacetamide, its degradation product, and inorganic ions was revealed. The analysis of the UV-degraded sulfacetamide drugs using the multisensory system based on hybrid membranes with optimized properties did not require a pre-separation of the components. The limits of detection of sulfacetamide, sulfanilamide, and sodium were 1.8 × 10−7, 5.8 × 10−7, and 1.8 × 10−7 M. The relative errors of the determination of the components of the UV-degraded sulfacetamide drugs were 2–3% (at 6–8% relative standard deviation). PFSA/CNT hybrid materials provided the stable work of the sensors for at least one year
    corecore