24,913 research outputs found

    Design and Engineering Pedagogies as Agents for Disruption, Innovation and Transformation and the Transfer and Application of Reverse Psychology Across the Disciplines

    Get PDF
    Design and engineering have individually and collectively disrupted and transformed societies, economies and the environment through innovative and regenerative practice and activities. Design and engineering education have also been transformative especially the former to which experiential, active, problem and project-based learning has always been central. This paper considers an innovative and particular teaching method – reverse psychology – that employs disruptive thinking and is being used to teach design and engineering students about sustainability. The project, results and impact are discussed in detail and were presented at EPDE21 [1]. The method proved highly successful and feedback suggested that it could be applicable to participants other than university students. This paper describes the subsequent research and its relevance to design and engineering education. The theory was tested in a workshop at an academic staff conference. Feedback was again very positive and a further workshop for academics from different disciplines was organised to develop subject–specific material and assess whether the method was transferable across disciplines. The experience proved highly beneficial to all parties who learnt from each other; the bespoke materials developed during the session were subsequently tested with students who again responded very positively, which soundly endorsed transferability. These various results show that design education remains innovative and is leading and supporting development of pioneering educational practices. Furthermore the design and engineering academics involved in the research learned from colleagues in other disciplines which supports and illustrates the benefit of transdisciplinary collaboration

    Being bad to do good: using reverse psychology to embed Life Cycle Thinking and knowledge of Sustainable Development Goals in design and engineering curricula

    Get PDF
    Designers and engineers have developed many products, systems and services that have been socially, economically and environmentally beneficial; however, they have also been initiators of and contributors to the linear economy, which has created many negative impacts and is proving unsustainable (1). Either way, the power and influence of the design and engineering professions is indisputable and therefore the role of educators as arbiters of good practice is critically important. Consequently, it is surprising that some courses still fail to include sustainability as a core subject and/or that sustainability is seen as a ‘tick box’ criterion that is ignored or forgotten once covered in an assignment. In the latter case this could be due to: students feeling over-whelmed by the breadth of criteria they need to address in their assignments; the way in which assignment briefs are presented and marks allocated; ‘eco- fatigue’ (e.g. in response negatives such as green washing) and/or eco-anxiety. This and similar phenomena such as climate-depression are increasing among people who work in sustainability-related professions and young people who feel as though they have no control over their future or are powerless to initiate positive change (2). It is important for educators to develop pedagogic strategies to simultaneously mitigate these issues and ensure that sustainability remains core to design and engineering courses; it is equally important to help students to deal with their negative feelings. Education for Sustainable Development involves developing positive solutions to problems. However, this paper proposes that reverse psychology (3) can be used to create enjoyable and educationally memorable experiences that highlight the need for good practice. In simple terms, reverse psychology encourages someone to do something by suggesting that he/she does the opposite (4). This paper describes a case study where first year engineering and design students were asked to develop the most unsustainable concept and to negate as many SDGs possible in response to subjects such as food / water supply and resource consumption. Once the students realised that ‘bad was good’ in this context the level of creativity and innovation rose and the end-of-project presentations were high spirited and humorous. This controversial approach has proved successful so far and the response to subsequent assignments asking for sustainable design proposals have been of a higher standard than those from other year groups and each has included evidence of Life Cycle Thinking and intrinsic links to Sustainable Development Goals with limited prompting. 1. Andrews, D., The circular economy, design thinking and education for sustainability. Local Economy; Article first published online: March 19, 2015; Issue published: May 1, 2015 Volume: 30 issue: 3, page(s): 305-315. 2. Clayton, S., Manning, C. M., Krygsman, K., & Speiser, M. (2017). Mental Health and Our Changing Climate: Impacts, Implications, and Guidance. Washington, D.C.: American Psychological Association, and ecoAmerica. 3. Pennebaker, J. W. and Sanders, D. Y. (1976) American graffiti: Effects of authority and reactance arousal. Personality and Social Psychology Bulletin, 2, 264-267 4. MaDonald, G., Nail, P.R and Harper, J.R. Do people use reverse psychology? An exploration of strategic self-anti-conformity. January 2011; Social Influence 6(1): 1-14 DOI: 10.1080/15534510.2010.51728

    Nonequilibrium quantum phase transition in itinerant electron systems

    Full text link
    We study the effect of the voltage bias on the ferromagnetic phase transition in a one-dimensional itinerant electron system. The applied voltage drives the system into a nonequilibrium steady state with a non-zero electric current. The bias changes the universality class of the second order ferromagnetic transition. While the equilibrium transition belongs to the universality class of the uniaxial ferroelectric, we find the mean-field behavior near the nonequilibrium critical point.Comment: Final version as accepted to Phys. Rev. Let

    Properties of Non-Abelian Fractional Quantum Hall States at Filling ν=kr\nu=\frac{k}{r}

    Full text link
    We compute the physical properties of non-Abelian Fractional Quantum Hall (FQH) states described by Jack polynomials at general filling ν=kr\nu=\frac{k}{r}. For r=2r=2, these states are identical to the ZkZ_k Read-Rezayi parafermions, whereas for r>2r>2 they represent new FQH states. The r=k+1r=k+1 states, multiplied by a Vandermonde determinant, are a non-Abelian alternative construction of states at fermionic filling 2/5,3/7,4/9...2/5, 3/7, 4/9.... We obtain the thermal Hall coefficient, the quantum dimensions, the electron scaling exponent, and show that the non-Abelian quasihole has a well-defined propagator falling off with the distance. The clustering properties of the Jack polynomials, provide a strong indication that the states with r>2r>2 can be obtained as correlators of fields of \emph{non-unitary} conformal field theories, but the CFT-FQH connection fails when invoked to compute physical properties such as thermal Hall coefficient or, more importantly, the quasihole propagator. The quasihole wavefuntion, when written as a coherent state representation of Jack polynomials, has an identical structure for \emph{all} non-Abelian states at filling ν=kr\nu=\frac{k}{r}.Comment: 2 figure

    Generalized Clustering Conditions of Jack Polynomials at Negative Jack Parameter α\alpha

    Full text link
    We present several conjectures on the behavior and clustering properties of Jack polynomials at \emph{negative} parameter α=−k+1r−1\alpha=-\frac{k+1}{r-1}, of partitions that violate the (k,r,N)(k,r,N) admissibility rule of Feigin \emph{et. al.} [\onlinecite{feigin2002}]. We find that "highest weight" Jack polynomials of specific partitions represent the minimum degree polynomials in NN variables that vanish when ss distinct clusters of k+1k+1 particles are formed, with ss and kk positive integers. Explicit counting formulas are conjectured. The generalized clustering conditions are useful in a forthcoming description of fractional quantum Hall quasiparticles.Comment: 12 page

    AL 3 (BH 261): a new globular cluster in the Galaxy

    Get PDF
    AL~3 (BH 261), previously classified as a faint open cluster candidate, is shown to be a new globular cluster in the Milky Way, by means of B, V and I Color-Magnitude Diagrams. The main feature of AL~3 is a prominent blue extended Horizontal Branch. Its Color-Magnitude Diagrams match those of the intermediate metallicity cluster M~5. The cluster is projected in a rich bulge field, also contaminated by the disk main sequence. The globular cluster is located in the Galactic bulge at a distance from the Sun d⊙_{\odot} = 6.0±\pm0.5 kpc. The reddening is E(B-V)=0.36±\pm0.03 and the metallicity is estimated to be [Fe/H] ≈\approx -1.3±\pm0.25. AL~3 is probably one of the least massive globular clusters of the Galaxy.Comment: 6 figures. Astrophysical Journal Letters, in pres

    Exceptional structure of the dilute A3_3 model: E8_8 and E7_7 Rogers--Ramanujan identities

    Get PDF
    The dilute A3_3 lattice model in regime 2 is in the universality class of the Ising model in a magnetic field. Here we establish directly the existence of an E8_8 structure in the dilute A3_3 model in this regime by expressing the 1-dimensional configuration sums in terms of fermionic sums which explicitly involve the E8_8 root system. In the thermodynamic limit, these polynomial identities yield a proof of the E8_8 Rogers--Ramanujan identity recently conjectured by Kedem {\em et al}. The polynomial identities also apply to regime 3, which is obtained by transforming the modular parameter by q→1/qq\to 1/q. In this case we find an A_1\times\mbox{E}_7 structure and prove a Rogers--Ramanujan identity of A_1\times\mbox{E}_7 type. Finally, in the critical q→1q\to 1 limit, we give some intriguing expressions for the number of LL-step paths on the A3_3 Dynkin diagram with tadpoles in terms of the E8_8 Cartan matrix. All our findings confirm the E8_8 and E7_7 structure of the dilute A3_3 model found recently by means of the thermodynamic Bethe Ansatz.Comment: 9 pages, 1 postscript figur
    • …
    corecore