354 research outputs found

    Physical properties of Ce3-xTe4 below room temperature

    Full text link
    The physical properties of polycrystalline Ce3-xTe4 were investigated by measurements of the thermoelectric properties, Hall coefficient, heat capacity, and magnetization. The fully-filled, metallic x=0 compound displays a soft ferromagnetic transition near 4K, and analysis of the corresponding heat capacity anomaly suggests a doublet ground state for Ce^{3+}. The transition is suppressed to below 2K in the insulating x=0.33 composition, revealing that magnetic order in Ce3-xTe4 is driven by an RKKY-type interaction. The thermoelectric properties trend with composition as expected from simple electron counting, and the transport properties in Ce3Te4 are observed to be similar to those in La3Te4. Trends in the low temperature thermal conductivity data reveal that the phonons are efficiently scattered by electrons, while all compositions examined have a lattice thermal conductivity near 1.2W/m/K at 200K.Comment: Submitted to Phys. Rev.

    Action at a distance as a full-value solution of Maxwell equations: basis and application of separated potential's method

    Full text link
    The inadequacy of Li\'{e}nard-Wiechert potentials is demonstrated as one of the examples related to the inconsistency of the conventional classical electrodynamics. The insufficiency of the Faraday-Maxwell concept to describe the whole electromagnetic phenomena and the incompleteness of a set of solutions of Maxwell equations are discussed and mathematically proved. Reasons of the introduction of the so-called ``electrodynamics dualism concept" (simultaneous coexistence of instantaneous Newton long-range and Faraday-Maxwell short-range interactions) have been displayed. It is strictly shown that the new concept presents itself as the direct consequence of the complete set of Maxwell equations and makes it possible to consider classical electrodynamics as a self-consistent and complete theory, devoid of inward contradictions. In the framework of the new approach, all main concepts of classical electrodynamics are reconsidered. In particular, a limited class of motion is revealed when accelerated charges do not radiate electromagnetic field.Comment: ReVTeX file, 24pp. Small corrections which do not have influence results of the paper. Journal reference is adde

    ACS imaging of 25 galaxies in nearby groups and in the field

    Full text link
    We present HST/ACS images and color-magnitude diagrams for 25 nearby galaxies with radial velocities V_LG < 500 km/s. Distances are determined based on the luminosities of stars at the tip of the red giant branch that range from 2 Mpc to 12 Mpc. Two of the galaxies, NGC 4163 and IC 4662, are found to be the nearest known representatives of blue compact dwarf (BCD) objects. Using high-quality data on distances and radial velocities of 110 nearby field galaxies, we derive their mean Hubble ratio to be 68 km/(s Mpc) with standard deviation of 15 km/(s Mpc). Peculiar velocities of most of the galaxies, V_pec = V_LG - 68 D, follow a Gaussian distribution with sigma_v = 63 km/s, but with a tail towards high negative values. Our data displays the known correlation between peculiar velocity and galaxy elevation above the Local Supercluster plane. The small observed fraction of galaxies with high peculiar velocities, V_pec < -500 km/s, may be understood as objects associated with nearby groups (Coma I, Eridanus) outside the Local volume.Comment: 17 pages, 8 figures, accepted to A

    Magnetic resonance in porous media: Recent progress

    Get PDF
    Recent years have seen significant progress in the NMR study of porous media from natural and industrial sources and of cultural significance such as paintings. This paper provides a brief outline of the recent technical development of NMR in this area. These advances are relevant for broad NMR applications in material characterization.open283

    Human Alpha Defensin 5 Expression in the Human Kidney and Urinary Tract

    Get PDF
    The mechanisms that maintain sterility in the urinary tract are incompletely understood. Recent studies have implicated the importance of antimicrobial peptides (AMP) in protecting the urinary tract from infection. Here, we characterize the expression and relevance of the AMP human alpha-defensin 5 (HD5) in the human kidney and urinary tract in normal and infected subjects.Using RNA isolated from human kidney, ureter, and bladder tissue, we performed quantitative real-time PCR to show that DEFA5, the gene encoding HD5, is constitutively expressed throughout the urinary tract. With pyelonephritis, DEFA5 expression significantly increased in the kidney. Using immunoblot analysis, HD5 production also increased with pyelonephritis. Immunostaining localized HD5 to the urothelium of the bladder and ureter. In the kidney, HD5 was primarily produced in the distal nephron and collecting tubules. Using immunoblot and ELISA assays, HD5 was not routinely detected in non-infected human urine samples while mean urinary HD5 production increased with E.coli urinary tract infection.DEFA5 is expressed throughout the urinary tract in non-infected subjects. Specifically, HD5 is expressed throughout the urothelium of the lower urinary tract and in the collecting tubules of the kidney. With infection, HD5 expression increases in the kidney and levels become detectable in the urine. To our knowledge, our findings represent the first to quantitate HD5 expression and production in the human kidney. Moreover, this is the first report to detect the presence of HD5 in infected urine samples. Our results suggest that HD5 may have an important role in maintaining urinary tract sterility

    Overexpression of the Rieske FeS protein of the Cytochrome b 6 f complex increases C4 photosynthesis in Setaria viridis.

    Get PDF
    C4 photosynthesis is characterised by a CO2 concentrating mechanism that operates between mesophyll and bundle sheath cells increasing CO2 partial pressure at the site of Rubisco and photosynthetic efficiency. Electron transport chains in both cell types supply ATP and NADPH for C4 photosynthesis. Cytochrome b 6 f is a key control point of electron transport in C3 plants. To study whether C4 photosynthesis is limited by electron transport we constitutively overexpressed the Rieske FeS subunit in Setaria viridis. This resulted in a higher Cytochrome b 6 f content in mesophyll and bundle sheath cells without marked changes in the abundances of other photosynthetic proteins. Rieske overexpression plants showed better light conversion efficiency in both Photosystems and could generate higher proton-motive force across the thylakoid membrane underpinning an increase in CO2 assimilation rate at ambient and saturating CO2 and high light. Our results demonstrate that removing electron transport limitations can increase C4 photosynthesis

    Cryo-EM structure of the spinach cytochrome b6 f complex at 3.6 Å resolution.

    Get PDF
    The cytochrome b6 f (cytb6 f ) complex has a central role in oxygenic photosynthesis, linking electron transfer between photosystems I and II and converting solar energy into a transmembrane proton gradient for ATP synthesis1-3. Electron transfer within cytb6 f occurs via the quinol (Q) cycle, which catalyses the oxidation of plastoquinol (PQH2) and the reduction of both plastocyanin (PC) and plastoquinone (PQ) at two separate sites via electron bifurcation2. In higher plants, cytb6 f also acts as a redox-sensing hub, pivotal to the regulation of light harvesting and cyclic electron transfer that protect against metabolic and environmental stresses3. Here we present a 3.6 Å resolution cryo-electron microscopy (cryo-EM) structure of the dimeric cytb6 f complex from spinach, which reveals the structural basis for operation of the Q cycle and its redox-sensing function. The complex contains up to three natively bound PQ molecules. The first, PQ1, is located in one cytb6 f monomer near the PQ oxidation site (Qp) adjacent to haem bp and chlorophyll a. Two conformations of the chlorophyll a phytyl tail were resolved, one that prevents access to the Qp site and another that permits it, supporting a gating function for the chlorophyll a involved in redox sensing. PQ2 straddles the intermonomer cavity, partially obstructing the PQ reduction site (Qn) on the PQ1 side and committing the electron transfer network to turnover at the occupied Qn site in the neighbouring monomer. A conformational switch involving the haem cn propionate promotes two-electron, two-proton reduction at the Qn site and avoids formation of the reactive intermediate semiquinone. The location of a tentatively assigned third PQ molecule is consistent with a transition between the Qp and Qn sites in opposite monomers during the Q cycle. The spinach cytb6 f structure therefore provides new insights into how the complex fulfils its catalytic and regulatory roles in photosynthesis

    Species-specific responses of Late Quaternary megafauna to climate and humans

    Get PDF
    Despite decades of research, the roles of climate and humans in driving the dramatic extinctions of large-bodied mammals during the Late Quaternary remain contentious. We use ancient DNA, species distribution models and the human fossil record to elucidate how climate and humans shaped the demographic history of woolly rhinoceros, woolly mammoth, wild horse, reindeer, bison and musk ox. We show that climate has been a major driver of population change over the past 50,000 years. However, each species responds differently to the effects of climatic shifts, habitat redistribution and human encroachment. Although climate change alone can explain the extinction of some species, such as Eurasian musk ox and woolly rhinoceros, a combination of climatic and anthropogenic effects appears to be responsible for the extinction of others, including Eurasian steppe bison and wild horse. We find no genetic signature or any distinctive range dynamics distinguishing extinct from surviving species, underscoring the challenges associated with predicting future responses of extant mammals to climate and human-mediated habitat change.This paper is in the memory of our friend and colleague Dr. Andrei Sher, who was a major contributor of this study. Dr Sher died unexpectedly, but his major contributions to the field of Quaternary science will be remembered and appreciated for many years to come. We are grateful to Dr. Adrian Lister and Dr. Tony Stuart for guides and discussions. Thanks to Tina B. Brandt, Dr. Bryan Hockett and Alice Telka for laboratory help and samples and to L. Malik R. Thrane for his work on the megafauna locality database. Data taken from the Stage 3 project was partly funded by Grant #F/757/A from the Leverhulme Trust, together with a grant from the McDonald Grants and Awards Fund. We acknowledge the Danish National Research Foundation, the Lundbeck Foundation, the Danish Council for Independent Research and the US National Science Foundation for financial suppor
    corecore