2,333 research outputs found

    The long and winding road: lyman-alpha radiative transfer and galactic outflows

    Get PDF
    The standard model of cosmology has been extremely successful in explaining observations of the universe. However, bringing the standard model predictions for the distribution of galaxies into agreement with observations relies critically on the invocation of feedback processes to regulate galaxy formation via galactic outflows. As such, there is intense interest in understanding and modelling the underlying physical processes involved in these outflows. In this thesis we present two new numerical Lyα radiative transfer codes, and apply them in a two-pronged approach to understanding galactic outflows driven by stellar feedback. In our first approach we identify the first systematic failing of basic ‘shell model’ outflows – an inability to produce the ‘blue bumps’ seen in the spectra of recent observations. We then present, and test with numerical radiative transfer simulations, a minor extension to the standard shell model paradigm which leads naturally to the production of blue bumps via Fermi-like acceleration of Lyα photons. In this way we paper over the cracks that were starting to show in shell models, and allow them to remain consistent with observations for the present time. However, we also cast one eye to the future, where we expect that at some point we will be forced to abandon such simple shell models. We therefore pursue an approach whereby we attempt to numerically simulate the hydrodynamical process of galaxy formation in a cosmological context. As a further step we then perform numerical radiative transfer to derive the observable properties of the formed galaxy. In this way we are able to test galactic outflow models against observations of similar systems. We find that a combination of the three observables which we simulate (Lyα emission, absorption, and spectral shape) provides a strong constraint on current outflow models, and ultimately motivates the development of better models

    The long and winding road: lyman-alpha radiative transfer and galactic outflows

    Get PDF
    The standard model of cosmology has been extremely successful in explaining observations of the universe. However, bringing the standard model predictions for the distribution of galaxies into agreement with observations relies critically on the invocation of feedback processes to regulate galaxy formation via galactic outflows. As such, there is intense interest in understanding and modelling the underlying physical processes involved in these outflows. In this thesis we present two new numerical Lyα radiative transfer codes, and apply them in a two-pronged approach to understanding galactic outflows driven by stellar feedback. In our first approach we identify the first systematic failing of basic ‘shell model’ outflows – an inability to produce the ‘blue bumps’ seen in the spectra of recent observations. We then present, and test with numerical radiative transfer simulations, a minor extension to the standard shell model paradigm which leads naturally to the production of blue bumps via Fermi-like acceleration of Lyα photons. In this way we paper over the cracks that were starting to show in shell models, and allow them to remain consistent with observations for the present time. However, we also cast one eye to the future, where we expect that at some point we will be forced to abandon such simple shell models. We therefore pursue an approach whereby we attempt to numerically simulate the hydrodynamical process of galaxy formation in a cosmological context. As a further step we then perform numerical radiative transfer to derive the observable properties of the formed galaxy. In this way we are able to test galactic outflow models against observations of similar systems. We find that a combination of the three observables which we simulate (Lyα emission, absorption, and spectral shape) provides a strong constraint on current outflow models, and ultimately motivates the development of better models

    The circumgalactic medium in Lyman-alpha: a new constraint on galactic outflow models

    Get PDF
    Galactic outflows are critical to our understanding of galaxy formation and evolution. However the details of the underlying feedback process remain unclear. We compare Lyα\alpha observations of the circumgalactic medium (CGM) of Lyman Break Galaxies (LBGs) with mock observations of their simulated CGM. We use cosmological hydrodynamical `zoom-in' simulations of an LBG which contains strong, momentum-driven galactic outflows. Simulation snapshots at z=2.2z=2.2 and z=2.65z=2.65 are used, corresponding to the available observational data. The simulation is post-processed with the radiative transfer code \textsc{crash} to account for the impact of ionising photons on hydrogen gas surrounding the simulated LBG. We generate mock absorption line maps for comparison with data derived from observed close galaxy-galaxy pairs. We perform calculations of Lyα\alpha photons scattering through the CGM with our newly developed Monte-Carlo code \textsc{slaf}, and compare to observations of diffuse Lyα\alpha halos around LBGs. Our fiducial galactic outflow model comes closer to reproducing currently observed characteristics of the CGM in Lyα\alpha than a reference inefficient feedback model used for comparison. Nevertheless, our fiducial model still struggles to reproduce the observed data of the inner CGM (at impact parameter b<30b<30kpc). Our results suggest that galactic outflows affect Lyα\alpha absorption and emission around galaxies mostly at impact parameters b<50b<50 kpc, while cold accretion flows dominate at larger distances. We discuss the implications of this result, and underline the potential constraining power of CGM observations - in emission and absorption - on galactic outflow models.Comment: 14 pages, 12 figure

    Cosmological Constant, Dark Matter, and Electroweak Phase Transition

    Full text link
    Accepting the fine tuned cosmological constant hypothesis, we have recently proposed that this hypothesis can be tested if the dark matter freeze out occurs at the electroweak scale and if one were to measure an anomalous shift in the dark matter relic abundance. In this paper, we numerically compute this relic abundance shift in the context of explicit singlet extensions of the Standard Model and explore the properties of the phase transition which would lead to the observationally most favorable scenario. Through the numerical exploration, we explicitly identify a parameter space in a singlet extension of the standard model which gives order unity observable effects. We also clarify the notion of a temperature dependence in the vacuum energy.Comment: 58 pages, 10 figure

    MyAirCoach: The use of home-monitoring and mHealth systems to predict deterioration in asthma control and the occurrence of asthma exacerbations; Study protocol of an observational study

    Get PDF
    © Published by the BMJ Publishing Group Limited. Introduction Asthma is a variable lung condition whereby patients experience periods of controlled and uncontrolled asthma symptoms. Patients who experience prolonged periods of uncontrolled asthma have a higher incidence of exacerbations and increased morbidity and mortality rates. The ability to determine and to predict levels of asthma control and the occurrence of exacerbations is crucial in asthma management. Therefore, we aimed to determine to what extent physiological, behavioural and environmental data, obtained by mobile healthcare (mHealth) and home-monitoring sensors, as well as patient characteristics, can be used to predict episodes of uncontrolled asthma and the onset of asthma exacerbations. Methods and analysis In an 1-year observational study, patients will be provided with mHealth and home-monitoring systems to record daily measurements for the first-month (phase I) and weekly measurements during a follow-up period of 11 months (phase II). Our study population consists of 150 patients, aged ≥18 years, with a clinician's diagnosis of asthma, currently on controller medication, with uncontrolled asthma and/or minimally one exacerbation in the past 12 months. They will be enrolled over three participating centres, including Leiden, London and Manchester. Our main outcomes are the association between physiological, behavioural and environmental data and (1) the loss of asthma control and (2) the occurrence of asthma exacerbations. Ethics This study was approved by the Medical Ethics Committee of the Leiden University Medical Center in the Netherlands and by the NHS ethics service in the UK. Trial registration number NCT02774772

    Nitric oxide and coronary vascular endothelium adaptations in hypertension

    Get PDF
    This review highlights a number of nitric oxide (NO)-related mechanisms that contribute to coronary vascular function and that are likely affected by hypertension and thus become important clinically as potential considerations in prevention, diagnosis, and treatment of coronary complications of hypertension. Coronary vascular resistance is elevated in hypertension in part due to impaired endothelium-dependent function of coronary arteries. Several lines of evidence suggest that other NO synthase isoforms and dilators other than NO may compensate for impairments in endothelial NO synthase (eNOS) to protect coronary artery function, and that NO-dependent function of coronary blood vessels depends on the position of the vessel in the vascular tree. Adaptations in NOS isoforms in the coronary circulation to hypertension are not well described so the compensatory relationship between these and eNOS in hypertensive vessels is not clear. It is important to understand potential functional consequences of these adaptations as they will impact the efficacy of treatments designed to control hypertension and coronary vascular disease. Polymorphisms of the eNOS gene result in significant associations with incidence of hypertension, although mechanistic details linking the polymorphisms with alterations in coronary vasomotor responses and adaptations to hypertension are not established. This understanding should be developed in order to better predict those individuals at the highest risk for coronary vascular complications of hypertension. Greater endothelium-dependent dilation observed in female coronary arteries is likely related to endothelial Ca2+ control and eNOS expression and activity. In hypertension models, the coronary vasculature has not been studied extensively to establish mechanisms for sex differences in NO-dependent function. Genomic and nongenomic effects of estrogen on eNOS and direct and indirect antioxidant activities of estrogen are discussed as potential mechanisms of interest in coronary circulation that could have implications for sex- and estrogen status-dependent therapy for hypertension and coronary dysfunction. The current review identifies some important basic knowledge gaps and speculates on the potential clinical relevance of hypertension adaptations in factors regulating coronary NO function

    Universal Loss Dynamics in a Unitary Bose Gas

    Full text link
    The low temperature unitary Bose gas is a fundamental paradigm in few-body and many-body physics, attracting wide theoretical and experimental interest. Here we first present a theoretical model that describes the dynamic competition between two-body evaporation and three-body re-combination in a harmonically trapped unitary atomic gas above the condensation temperature. We identify a universal magic trap depth where, within some parameter range, evaporative cooling is balanced by recombination heating and the gas temperature stays constant. Our model is developed for the usual three-dimensional evaporation regime as well as the 2D evaporation case. Experiments performed with unitary 133 Cs and 7 Li atoms fully support our predictions and enable quantitative measurements of the 3-body recombination rate in the low temperature domain. In particular, we measure for the first time the Efimov inelasticity parameter η\eta * = 0.098(7) for the 47.8-G d-wave Feshbach resonance in 133 Cs. Combined 133 Cs and 7 Li experimental data allow investigations of loss dynamics over two orders of magnitude in temperature and four orders of magnitude in three-body loss. We confirm the 1/T 2 temperature universality law up to the constant η\eta *

    A Neutral Heteroatomic Zintl Cluster for the Catalytic Hydrogenation of Cyclic Alkenes

    Get PDF
    We report on the synthesis of an alkane-soluble Zintl cluster, [η4-Ge9(Hyp)3]Rh(COD), that can catalytically hydrogenate cyclic alkenes such as 1,5-cyclooctadiene and cis-cyclooctene. This is the first example of a well-defined Zintl-cluster-based homogeneous catalyst

    Ghostly galaxies: accretion-dominated stellar systems in low-mass dark matter halos

    Full text link
    Wide-area deep imaging surveys have discovered large numbers of extremely low surface brightness dwarf galaxies, which challenge galaxy formation theory and, potentially, offer new constraints on the nature of dark matter. Here we discuss one as-yet unexplored formation mechanism that may account for a fraction of low surface brightness dwarfs. We call this the `ghost galaxy' scenario. In this scenario, inefficient radiative cooling prevents star formation in the `main branch' of the merger tree of a low mass dark matter halo, such that almost all its stellar mass is acquired through mergers with less massive (but nevertheless star-forming) progenitors. Present-day systems formed in this way would be `ghostly' isolated stellar halos with no central galaxy. We use merger trees based on the Extended Press-Schechter formalism and the COCO cosmological N-body simulation to demonstrate that mass assembly histories of this kind can occur for low-mass halos in Lambda-CDM, but they are rare. They are most probable in isolated halos of present-day mass ~4x10^9 M_sun, occurring for ~5 per cent of all halos of that mass under standard assumptions about the timing and effect of cosmic reionization. The stellar masses of star-forming progenitors in these systems are highly uncertain; abundance-matching arguments imply a bimodal present-day mass function having a brighter population (median M_star ~3x10^6 M_sun) consistent with the tail of the observed luminosity function of ultra-diffuse galaxies. This suggests observable analogues of these systems may await discovery. We find that a stronger ionizing background (globally or locally) produces brighter and more extended ghost galaxies.Comment: 19 pages, 13 figures, ApJ in pres
    corecore