46 research outputs found

    Treatment Pathway of Bone Sarcoma in Children, Adolescents, and Young Adults

    Get PDF
    When pediatric, adolescent, and young adult patients present with a bone sarcoma, treatment decisions, especially after relapse, are complex and require a multidisciplinary approach. This review presents scenarios commonly encountered in the therapy of bone sarcomas with the goal of objectively presenting a consensus, multidisciplinary management approach. Little variation was found in the authors\u27 group with respect to local control or systemic therapy. Clinical trials were universally prioritized in all settings. Decisions regarding relapse therapies in the absence of a clinical trial had very minor variations initially, but a consensus was reached after a literature review and discussion. This review presents a concise document and figures as a starting point for evidence-based care for patients with these rare diseases. This framework allows prospective decision making and prioritization of clinical trials. It is hoped that this framework will inspire and focus future clinical research and thus lead to new trials to improve efficacy and reduce toxicity

    Circulating Tumor Cells and Biomarker Modulation with Olaratumab Monotherapy Followed by Olaratumab plus Doxorubicin: Phase Ib Study in Patients with Soft-Tissue Sarcoma

    Get PDF
    This phase Ib study enumerated whole blood circulating tumor cells (CTC) and evaluated biomarkers in patients with potentially resectable soft-tissue sarcoma (STS) treated with olaratumab monotherapy (20 mg/kg) for one cycle followed by up to six cycles of olaratumab (20 mg/kg, cycles 1–2; 15 mg/kg, cycles 3–7) plus doxorubicin (75 mg/m2 on day 1). CTCs, platelet-derived growth factor receptors (PDGFR), and PDGF ligand expression in tumor tissue pre- and post-olaratumab monotherapy were evaluated. Antitumor activity, safety, pharmacokinetics, and PET/biomarker association with clinical outcome were assessed. Of 51 treated patients, 35, 43, and 37 were evaluable for CTC enumeration, PDGFRs, and PDGF ligand expression, respectively. An increase in CTCs at cycle 1 day 8 was observed, followed by a significant reduction by cycle 3 day 1 or 30-day follow-up. Decrease in CTC counts after olaratumab monotherapy was higher in patients with disease control than without disease control (57.9% vs. 31.2%). Baseline IHC expression was positive in most patients for PDGFRα [n = 31 (72.1%)] and PDGFRβ [n = 36 (83.7%)]. Similar rates were observed post-olaratumab monotherapy [PDGFRα, n = 30 (69.8%); PDGFRβ, n = 33 (76.7%)]. Eleven patients (29.7%) showed a 30% reduction by RT-PCR in PDGFRα at cycle 2. PDGFR expression and PET response showed no correlation with clinical outcome. Safety and pharmacokinetic profiles were consistent with previous reports. This study, the first to use a validated method for CTC detection, confirms that CTC enumeration in STS is feasible. However, no correlation was observed between PDGFRα expression and clinical outcome.This work was supported by Eli Lilly and Company

    Early objective response to avelumab treatment is associated with improved overall survival in patients with metastatic Merkel cell carcinoma

    Get PDF
    Background: Response rates are primary endpoints in many oncology trials; however, correlation with overall survival (OS) is not uniform across cancer types, treatments, or lines of therapy. This study explored the association between objective response (OR) and OS in patients with chemotherapy-refractory metastatic Merkel cell carcinoma who received avelumab (anti-PD-L1). Methods: Eighty-eight patients enrolled in JAVELIN Merkel 200 (part A; NCT02155647) received i.v. avelumab 10 mg/kg every 2 weeks until confirmed progression, unacceptable toxicity, or withdrawal. Using conditional landmark analyses, we compared OS in patients with and without confirmed OR (RECIST v1.1). We applied a Cox model that included OR as a time-varying covariate and adjusted for age, visceral disease, and number of previous therapies. Results: Twenty-nine patients had confirmed OR; 20 by study week 7 and 7 more between study weeks 7 and 13. Survival probabilities 18 months after treatment initiation were 90% [95% confidence interval (CI) 65.6-97.4] in patients with OR at week 7 and 26.2% (95% CI 15.7-37.8) in patients without OR but who were alive at week 7. Median OS was not reached in patients with OR and was 8.8 months (95% CI 6.4-12.9) in patients without. Similar results were observed for the week 13 landmark. The adjusted Cox model showed OR was associated with a 95% risk reduction of death [hazard ratio 0.052 (95% CI 0.018-0.152)] compared with a nonresponse. Conclusions: Patients with OR by 7 or 13 weeks had significantly longer OS than patients without, confirming that early OR is an endpoint of major importance

    Immuno-transcriptomic profiling of extracranial pediatric solid malignancies.

    Get PDF
    We perform an immunogenomics analysis utilizing whole-transcriptome sequencing of 657 pediatric extracranial solid cancer samples representing 14 diagnoses, and additionally utilize transcriptomes of 131 pediatric cancer cell lines and 147 normal tissue samples for comparison. We describe patterns of infiltrating immune cells, T cell receptor (TCR) clonal expansion, and translationally relevant immune checkpoints. We find that tumor-infiltrating lymphocytes and TCR counts vary widely across cancer types and within each diagnosis, and notably are significantly predictive of survival in osteosarcoma patients. We identify potential cancer-specific immunotherapeutic targets for adoptive cell therapies including cell-surface proteins, tumor germline antigens, and lineage-specific transcription factors. Using an orthogonal immunopeptidomics approach, we find several potential immunotherapeutic targets in osteosarcoma and Ewing sarcoma and validated PRAME as a bona fide multi-pediatric cancer target. Importantly, this work provides a critical framework for immune targeting of extracranial solid tumors using parallel immuno-transcriptomic and -peptidomic approaches

    Comprehensive and Integrated Genomic Characterization of Adult Soft Tissue Sarcomas

    Get PDF
    Sarcomas are a broad family of mesenchymal malignancies exhibiting remarkable histologic diversity. We describe the multi-platform molecular landscape of 206 adult soft tissue sarcomas representing 6 major types. Along with novel insights into the biology of individual sarcoma types, we report three overarching findings: (1) unlike most epithelial malignancies, these sarcomas (excepting synovial sarcoma) are characterized predominantly by copy-number changes, with low mutational loads and only a few genes (, , ) highly recurrently mutated across sarcoma types; (2) within sarcoma types, genomic and regulomic diversity of driver pathways defines molecular subtypes associated with patient outcome; and (3) the immune microenvironment, inferred from DNA methylation and mRNA profiles, associates with outcome and may inform clinical trials of immune checkpoint inhibitors. Overall, this large-scale analysis reveals previously unappreciated sarcoma-type-specific changes in copy number, methylation, RNA, and protein, providing insights into refining sarcoma therapy and relationships to other cancer types

    Chromosome 19 miRNA cluster and CEBPB expression specifically mark and potentially drive triple negative breast cancers.

    No full text
    Triple negative breast cancers (TNBCs) are known to express low PGR, ESR1, and ERBB2, and high KRT5, KRT14, and KRT17. However, the reasons behind the increased expressions of KRT5, KRT14, KRT17 and decreased expressions of PGR, ESR1, and ERBB2 in TNBCs are not fully understood. Here we show that, expression of chromosome 19 miRNA cluster (C19MC) specifically marks human TNBCs. Low REST and high CEBPB correlate with expression of C19MC, KRT5, KRT14, and KRT17 and enhancers of these genes/cluster are regulated by CEBPB and REST binding sites. The C19MC miRNAs in turn can potentially target REST to offer a positive feedback loop, and might target PGR, ESR1, ERBB2, GATA3, SCUBE2, TFF3 mRNAs to contribute towards TNBC phenotype. Thus our study demonstrates that C19MC miRNA expression marks TNBCs and that C19MC miRNAs and CEBPB might together determine the TNBC marker expression pattern
    corecore