13 research outputs found

    NE Baidrag block, Mongolia, records anticlockwise metamorphic paths at c. 890−790 Ma indicating peri-Rodinian back-arc compression followed with c. 560-520 Ma burial

    Full text link
    The Barrovian type metamorphism affecting the peri-Siberian tract of the Central Asian Orogenic Belt is mostly dated indirectly on zircon from (syn-tectonic) magmatic rocks as Late Proterozoic - Early Cambrian. However, in-situ monazite geochronology in micaschists and migmatite gneisses at the northern part of the Precambrian Baidrag block, central Mongolia, revealed that the Baikalian Late Proterozoic - Early Cambrian cycle overprints an earlier Tonian phase of metamorphism. The apparent Barrovian-type zoning ranging from garnet, staurolite, kyanite to kyanite/sillimanite migmatitic gneisses is thus false and points to hidden metamorphic discontinuities and mixed metamorphic histories from different times. Therefore, to decipher and interpret the record of different tectono-metamorphic events it is necessary to unreveal complete P-T-t paths from individual samples. Two localities with Tonian-age monazite show anticlockwise P-T paths: 1) Grt−Sil−Ky gneiss records burial to the sillimanite stability (~720°C, 6.0 kbar) followed by burial to the kyanite stability (~750°C, 9 kbar) and, 2) The Grt−St schist records burial to the staurolite stability field (~620°C, 6 kbar), further followed by almost isothermal burial (~590°C, 8.5 kbar). Based on monazite textural positon, internal zoning, and REE patterns, the time of prograde burial under a thermal gradient of 27-32°C/km is estimated at c. 890−853 Ma and further burial under a geothermal gradient of 18-22°C/km is dated at c. 835−815 Ma. On the other hand three localities with Late Proterozoic to Cambrian monazite ages show clockwise metamorphic paths at variable P-T gradients: 3) P-T conditions of the Grt schist reaches ~5 kbar and 500 °C and 4) the Grt−St−Ky schist reaches conditions of 9 kbar and 670 °C, indicating burial under a geothermal gradient of 20-26 °C/km. 5) Grt-Sil gneiss shows peak of 6-7 kbar and 700-750 °C, indicating melting conditions at 30-32 °C/km gradient. Monazite included in porphyroblasts and in the matrix indicate that these P-T conditions reached under variable geothermal gradient were semi-contemporaneous and occurred between 570 and 520 Ma. By correlation with published zircon ages of 600-530 Ma from granitoid magmatic rocks we suggest that the areas with higher geothermal gradient may be explained by closer vicinity of magmatic intrusions. These P−T and geochronology data from a continuous Barrovian metamorphic section suggest that anticlockwise P−T evolution from c. 930 to 750 Ma can be interpreted as a result of thickening of peri-Rodinian supra-subduction extensional and hot edifice. This metamorphic event was followed by a clockwise P−T evolution from c. 570 to 520 Ma possibly related to the collision of the Baidrag continental active margin with peri-Siberian continental mass further north

    PTt history from kyanite-sillimanite migmatites and garnet-staurolite schists from the Bayankhongor area, Mongolia indicates suprasubduction switching from extension to compression during Rodinia assembly

    Full text link
    The tectonometamorphic evolution of the peri-Siberian tract of the Central Asian Orogenic Belt is mainly characterized by Baikalian Late Proterozoic - Early Cambrian cycle related to amalgamation of Proterozoic oceanic and continent fragments to Siberain landmass. Here we present in-situ monazite geochronology linked to P−T modelling of micashischsts and migmatite gneisses at the northern part of the Precambrian Baydrag block (central Mongolia) previously considered as a part of Baikalian metamorphic belt. Garnet-sillimanite-kyanite gneiss records first burial to the sillimanite stability at ~725 °C and 6.5 kbar, followed by burial to the kyanite stability at ~650 °C and ~8 kbar. The garnet-staurolite schist records burial to the staurolite-stability at ~620 °C and 6 kbar, followed by a nearly isothermal burial to ~580 °C and 9 kbar. The monazite data yield a continuum of 207Pb-corrected 238U/206Pb dates of c. 926−768 Ma in the Grt−Sil−Ky gneiss, and c. 937−754 Ma in the Grt-St schist. Based on monazite textural positon and internal zoning, the time of prograde burial and peak under a thermal gradient of 28-32 °C/km is estimated at c. 870−890 Ma. It is not clear whether such high grade conditions prevailed until a phase of further burial under a geothermal gradient of 18-22 °C/km and dated at 800−820 Ma. Additionally, monazite with dates of c. 568−515 Ma occurs as whole grains or as rims with sharp boundaries on Grenvillean monazite in Grt-St schist testifying for minor Baikalian overprint. Metamorphic zircon rims with Th/U ratio ~0.01-0.06 in Grt−Sil−Ky gneiss with 877 ± 7 Ma age, together with lower intercepts of zircon discordia lines in both Grt-Sil-Ky gneiss and Grt-St schist further support the Tonian age of high grade metamorphism. The P−T and geochronology data show anticlockwise P−T evolution from c. 930 to 750 Ma which is interpreted as a result of thickening of suprasubduction extensional and hot edifice - probably of back arc or arc type. This kind of prograde metamorphism was so far described only on the northern part of the Tarim block and interpreted as a result of initiation of peri-Rodinian subduction of Mirovoi Ocean. Here, we further discuss geodynamic consequences of a unique discovery of Tonian metamorphism in term of tectonic switch related to initiation of peri-Rodinian oceanic subduction during supercontinent assembly followed by strong mechanical coupling potentially related to onset of Rodinia splitting

    Anticlockwise metamorphic paths at ca. 890−790 Ma from the NE Baidrag block, Mongolia, indicate back-arc compression at the Rodinia periphery

    Full text link
    The processes leading to the assembly of the Rodinia supercontinent through Grenvillian collisional orogeny are relatively well known. In contrast, accretionary orogenic processes occurring at the supercontinent periphery following Rodinia assembly are poorly understood. To fill this gap, we have identified metamorphic rocks in the Mongolia collage of the Central Asian Orogenic Belt, where numerous data testify for Meso- to Neo-proterozoic magmatic reworking. The tectono-metamorphic evolution of the peri-Siberian tract of the Central Asian Orogenic Belt is mainly characterized by the late Proterozoic-early Cambrian (Baikalian) cycle. However, we document here a Tonian age metamorphism at the northern part of the Precambrian Baidrag block, previously considered as a typical example of the Baikalian metamorphic belt. This study incorporates zircon and in-situ monazite geochronology linked to P-T modelling of Grt-Sil-Ky migmatite gneiss and Grt-St micaschist. Grt-Sil-Ky gneiss records initial burial to the sillimanite stability field at ~720 °C and 6.0 kbar followed by further burial to the kyanite stability field at ~750 °C and ~9 kbar and decompression to ~650 °C and ~8 kbar. The Grt-St schist records initial burial to the staurolite stability field at ~620 °C and 6 kbar, followed by further burial to ~590 °C and 8.5 kbar. The monazite data yield a continuum of 207Pb-corrected 238U/206Pb dates of ca. 926−768 Ma in the Grt-Sil-Ky gneiss, and ca. 937−754 Ma in the Grt-St schist. Based on monazite textural positon, internal zoning, and REE patterns, the time of prograde burial to 6.0 kbar under a thermal gradient of 27-32 °C/km is estimated at ca. 890−853 Ma. It is not clear whether such high-grade conditions prevailed until a phase of further burial under a geothermal gradient of 18-22 °C/km dated at ca. 835−815 Ma. The late monazite recrystallization at ca. 790 Ma is related to decompression. Additionally, monazite with dates of ca. 568−515 Ma occur as whole grains or as rims with sharp boundaries on Tonian monazite in Grt-St schist suggesting a minor Baikalian overprint. Metamorphic zircon rims with Th/U ratios of ~0.01-0.06 in Grt-Sil-Ky gneiss with 877±7 Ma age, together with lower intercepts of detrital zircon discordia lines in both Grt-Sil-Ky gneiss and Grt-St schist further support the Tonian age of high-grade metamorphism. The anticlockwise P-T evolution is interpreted as a result of thickening of a supra-subduction extensional and hot edifice - probably of back-arc or arc type. This kind of prograde metamorphism has so far only been described on the northern part of the Tarim block and was interpreted to be a result of initiation of peri- Rodinian subduction of the Mirovoi Ocean. The geodynamic consequences of a unique discovery of Tonian metamorphism are discussed in terms of tectonic switch related to initiation of peri-Rodinian oceanic subduction during supercontinent assembly, followed by strong mechanical coupling potentially related to onset of Rodinia dispersal

    İzmir‐Ankara suture as a Triassic to Cretaceous plate boundary – data from central Anatolia

    Get PDF
    The Ä°zmir‐Ankara suture represents part of the boundary between Laurasia and Gondwana along which a wide Tethyan ocean was subducted. In northwest Turkey, it is associated with distinct oceanic subduction‐accretion complexes of Late Triassic, Jurassic and Late Cretaceous ages. The Late Triassic and Jurassic accretion complexes consist predominantly of basalt with lesser amounts of shale, limestone, chert, Permian (274 Ma zircon U‐Pb age) metagabbro and serpentinite, which have undergone greenschist facies metamorphism. Ar‐Ar muscovite ages from the phyllites range from 210 Ma down to 145 Ma with a broad southward younging. The Late Cretaceous subduction‐accretion complex, the ophiolitic mĂ©lange, consists of basalt, radiolarian chert, shale and minor amounts of recrystallized limestone, serpentinite and greywacke, showing various degrees of blueschist facies metamorphism and penetrative deformation. Ar‐Ar phengite ages from two blueschist metabasites are ca. 80 Ma (Campanian). The ophiolitic mĂ©lange includes large Jurassic peridotite‐gabbro bodies with plagiogranites with ca. 180 Ma U‐Pb zircon ages. Geochronological and geological data show that Permian to Cretaceous oceanic lithosphere was subducted north under the Pontides from the Late Triassic to the Late Cretaceous. This period was characterized generally by subduction‐accretion, except in the Early Cretaceous, when subduction‐erosion took place. In the Sakarya segment all the subduction accretion complexes, as well as the adjacent continental sequences, are unconformably overlain by Lower Eocene red beds. This, along with the stratigraphy of the Sakarya Zone indicate that the hard collision between the Sakarya Zone and the Anatolide‐Tauride Block took place in Paleocene

    Major Late Cretaceous Mass Flows in Central Turkey Recording the Disruption of the Mesozoic Continental Margin

    No full text
    The newly recognized Upper Cretaceous (similar to 87Ma) olistostrome belt in central Turkey west of Ankara extends for more than 112 km subparallel to the Izmir-Ankara suture with a width of 10 km. The Alacaatl Olistostromes are stratigraphically underlain by a Triassic basement, and are up to 2 km thick. Over 80% of the blocks in the olistostromes consist of pelagic limestones, which reach up to 300 m in size; other blocks include basalt, chert, serpentinite, tuff, and sandstone. The limestone blocks are Jurassic and Cretaceous in age with micropaleontology documenting the presence of Callovian-Oxfordian, Tithonian, Berriasian, Aptian, Albian, Cenomanian, and Turonian stages. The flows are separated by intrabasinal sediments of shale, siltstone, and volcaniclastic sandstone with Albian (108-101 Ma) detrital zircons. The olistostromes show minor tectonic deformation, and are unconformably overlain by Santonian pelagic limestones. The deposition of the Alacaatl Olistostromes was followed by arc magmatism, which started in the Campanian (similar to 78Ma) after a period of shortening and uplift, and the region became a fore-arc basin with deposition of shale and volcaniclastic sandstone with Campanian (78-72 Ma) detrital zircons. A number of peculiar features of these olistostromes including rapid uplift and erosion before the creation of a deep, short-lived (89-86 Ma) ephemeral basin, dominance of deep marine limestone blocks, and inception of arc magmatism approximately 9 Myr after their deposition indicate a major tectonic event involving the disruption of the continental margin prior to the onset of arc magmatism. This event is interpreted as a change from transform margin to subduction

    REE behavior in warm and cold subducting oceanic crust

    No full text
    In situ laser probing of minerals in a lawsonite-bearing eclogitic metabasite and two epidote-bearing eclogites reveals metamorphic reaction-controlled REE mobility and redistribution. In the lawsonite-bearing eclogitic metabasite, the garnet shows typical core-to-rim HREE depletion and a Tb-Er + Y enriched outer rim. Inclusions across the garnet reveal that formation of the rim coincided with the disappearance of epidote and titanite and the appearance of sodic pyroxene and rutile, possibly representing the blueschist-eclogite facies transition. The lawsonite is characterized by a flat REE pattern in the core but its rim shows remarkable HREE depletion due to garnet nucleation. In contrast, in the epidote-bearing eclogite, lawsonite is found only as inclusions in the garnet and was otherwise consumed along the prograde path. The garnet outer rim is characterized by MREE (Sm-Tb) enrichment caused by the lawsonite breakdown, while omphacite and rutile were stable, suggesting eclogite-facies dehydration. Thus, in warm subduction zones, the LREE may be largely released at shallow depths due to lawsonite breakdown and fluxed into the hydrated mantle wedge, where they can contribute to arc volcanism. In cold subduction zones, however, some LREE and MREE are retained in the slab and released at depths well beyond the arc; element flux to the sub-arc mantle in such subduction zones may be dominated by other sources, such as dehydration of the serpentinized part of the slab

    Petrochronology of himalayan ultrahigh-pressure eclogite

    No full text
    The timing and nature of the India-Asia collision, Earth's largest ongoing continent-continent collisional orogen, are unclear. Ultrahigh-pressure metamorphism of Indian continental margin rocks is used as a proxy for initial collision because it indicates subduction of India. Records of this metamorphism are preserved only at Kaghan Valley (Pakistan) and Tso Morari (Ladakh, India), separated by ~500 km and having published ages of peak pressure of 46.2 ± 0.7 Ma and 53-51 Ma, respectively. The apparent ~6 m.y. age difference may reflect multiple subduction events, a large promontory along the former Indian margin, or inadequate constraints on the time of peak pressure recrystallization at Tso Morari. We present 108 coupled, in situ U/Th-Pb and rare earth element (REE) analyses of zircons in two Tso Morari eclogites to obtain age and petrologic information. The ages range from ca. 53 Ma to 37 Ma, and peak at ca. 47-43 Ma. Flat heavy REE slopes and the absence of an Eu anomaly are compatible with eclogite-facies zircon (re)crystallization. This (re)crystallization probably occurred at ultrahigh pressure, because 64% of the analyses are from zircon included in ultrahigh- pressure garnet and omphacite. These results are consistent with those from Kaghan Valley, and suggest that a single, protracted ultrahigh-pressure metamorphic event occurred contemporaneously across much of the orogen, following initial contact of the Indian and Asian continents at ca. 51 Ma or later. © 2013 Geological Society of America.Link_to_subscribed_fulltex

    Early Cretaceous sedimentation and orogeny on the active margin of Eurasia: Southern Central Pontides, Turkey

    No full text
    The Pontides in northern Turkey constituted part of the southern active margin of Eurasia during the Mesozoic. In the Early Cretaceous, a large submarine turbidite fan covered most of the Central Pontides. New U-Pb detrital zircon data imply that the major source of the turbidites was the East European Craton-Scythian Platform in the north. This implies that there was no thoroughgoing Black Sea basin between the Pontides and the East European Craton during the Early Cretaceous. The Lower Cretaceous turbidites are bounded in the south by a large metamorphic area, the Central Pontide Supercomplex (CPS). New geological mapping, petrology, and U-Pb zircon and Ar-Ar muscovite ages indicate that the northern part of the CPS consists of Lower Cretaceous distal turbidites deformed and metamorphosed in a subduction zone in the Albian. The rest of the CPS is made of Middle Jurassic, Lower Cretaceous, and middle Cretaceous (Albian) metamorphic belts, each constituting distinct subduction-accretion units. They represent episodes of collision of oceanic volcanic arcs and oceanic plateaus with the Eurasian margin and are marked in the stratigraphy of the hinterland by periods of uplift and erosion. The accretionary complexes are overlain by Upper Cretaceous (Turonian-Santonian) volcano-sedimentary sequences deposited in a fore-arc setting. The detrital zircon data, middle Cretaceous (Albian) metamorphism, and widespread Albian uplift of the Black Sea region suggest that Early Cretaceous (Barremian-Aptian) nonvolcanic rifting and Late Cretaceous (Turonian-Santonian) opening of the Black Sea by the splitting of the arc are unrelated events

    Protracted eclogite-facies metamorphism of the Dulan area, North Qaidam ultrahigh-pressure terrane: Insights on zircon growth during continental subduction and collision

    No full text
    Continental subduction and collision are recorded by ultrahigh-pressure (UHP) terranes; UHP terranes that form at early stages of an orogeny tend to be small and experience short residence at eclogite-facies depths, whereas terranes that form at mature stages of an orogeny tend to be larger and experience longer residence at these depths, but accurately determining eclogite-facies residence time requires a large geochronologic dataset tied to metamorphic conditions (via trace elements and/or inclusions). In the Dulan area, North Qaidam UHP terrane, China, it remains unclear whether the terrane experienced a long residence at eclogite-facies depths, marking the mature stage of an orogeny or two distinct (ultra)high pressure ([U]HP) events (with short residence times), interpreted as the transition from oceanic subduction to continental collision, where one (U)HP event is related to the former and second (U)HP event to the latter. To address this issue, we report new zircon U–Pb ages and trace-element data from eclogite and host paragneiss from the Dulan area and show that this terrane records ~42 Myr of eclogite-facies metamorphism at (U)HP conditions, similar to other large UHP terranes. Zircon from 11 eclogite and 2 gneiss samples yields weighted mean ages of 463–425 Ma, flat heavy rare earth element (HREE) patterns without negative Eu anomalies, and eclogitic mineral inclusions, indicating eclogite-facies conditions. Paragneiss metamorphic ages overlap with ages from eclogite but are generally younger, suggesting that a lack of internally generated fluids may have inhibited zircon growth and/or recrystallization until early decompression and white mica consumption in felsic gneiss generated fluids; thus, we interpret that these felsic rocks record the later stages of continental collision. Dataset patterns from all new and previously published analyses for the Dulan area (34 eclogite and 14 gneiss) suggest that metamorphic zircon in eclogite records prograde, peak and possibly early retrograde conditions, in contrast to the prediction from mass balance models that metamorphic zircon should only grow during exhumation and cooling. We reconcile our observations with these model predictions by recognizing that differential solubility can lead to grain-scale zircon growth or recrystallization over a large segment of the pressure–temperature (P–T) path even where zircon abundance decreases at the whole-rock scale
    corecore