15 research outputs found

    Predicted carcass meat yield and primal cut yields in cattle divergent in genetic merit for a terminal index

    Get PDF
    peer-reviewedSeveral studies have clearly demonstrated the favorable impact of genetic selection on increasing beef cattle performance within the farm gate. Few studies, however, have attempted to quantify the value of genetic selection to downstream sectors of the beef industry, such as the meat processing sector. The objective of the current study was to characterize detailed carcass attributes of animals divergent in genetic merit for a terminal index as well as individual measures of genetic merit for carcass weight, conformation, and fat. The data used consisted of 53,674 young bulls and steers slaughtered between the years 2010 and 2013 in multiple Irish processing plants. All animals had a genetic evaluation as well as phenotypic measures of carcass characteristics. A terminal index, based on pedigree index for calving performance, feed intake, and carcass traits, calculated from the Irish national genetic evaluations, was obtained for each animal. Animals were categorized into four terminal index groups based on genetic merit estimates derived prior to the expression of the carcass phenotype by the animal. The association between genetic merit for terminal index with predicted phenotypic carcass red meat yield, carcass fat, carcass bone, and carcass composition, as well as between genetic merit for carcass weight, conformation, and fat with predicted phenotypic carcass red meat yield and composition were all quantified using linear mixed models. A greater terminal index value was associated with, on average, heavier phenotypic weights of each wholesale cut category. A greater terminal index value was also associated with a greater weight of meat and bone, but reduced carcass fat. Relative to animals in the lowest 25% genetic merit group, animals in the highest 25% genetic merit group had, on average, a greater predicted yield of very high value cuts (4.52 kg), high value cuts (13.13 kg), medium value cuts (6.06 kg), low value cuts (13.25 kg) as well as more total meat yield (37 kg). The results from the present study clearly signify a benefit to meat processers from breeding programs for terminal characteristics; coupled with the previously documented benefits to the producer, the benefits of breeding programs across the entire food production chain are obvious

    Evidence for genetic variance in resistance to tuberculosis in Great Britain and Irish Holstein-Friesian populations

    Get PDF
    peer-reviewedBackground: Here, we jointly summarise scientific evidence for genetic variation in resistance to infection with Mycobacterium bovis, the primary agent of bovine tuberculosis (TB), provided by two recent and separate studies of Holstein-Friesian dairy cow populations in Great Britain (GB) and Ireland. Methods: The studies quantified genetic variation within archived data from field and abattoir surveillance control programmes within each country. These data included results from the single intradermal comparative tuberculin test (SICTT), abattoir inspection for TB lesions and laboratory confirmation of disease status. Threshold animal models were used to estimate variance components for responsiveness to the SICTT and abattoir confirmed M. bovis infection. The link functions between the observed 0/1 scale and the liability scale were the complementary log-log in the GB, and logit link function in the Irish population. Results and discussion: The estimated heritability of susceptibility to TB, as judged by responsiveness to the SICTT, was 0.16 (0.012) and 0.14 (0.025) in the GB and Irish populations, respectively. For abattoir or laboratory confirmation of infection, estimates were 0.18 (0.044) and 0.18 (0.041) from the GB and the Irish populations, respectively. Conclusions: Estimates were all significantly different from zero and indicate that exploitable variation exists among GB and Irish Holstein Friesian dairy cows for resistance to TB. Epidemiological analysis suggests that factors such as variation in exposure or imperfect sensitivity and specificity would have resulted in underestimation of the true values

    In vitro characterisation of fresh and frozen sex-sorted bull spermatozoa

    Get PDF
    peer-reviewedThis study sought to compare the in vitro characteristics of fresh and frozen non-sorted (NS) and sex-sorted (SS) bull spermatozoa. Experiment 1: Holstein–Friesian ejaculates (n = 10 bulls) were split across four treatments and processed: (1) NS fresh at 3 × 106 spermatozoa, (2) X-SS frozen at 2 × 106 spermatozoa, (3) X-SS fresh at 2 × 106 spermatozoa and (4) X-SS fresh at 1 × 106 spermatozoa. NS frozen controls of 20 × 106 spermatozoa per straw were sourced from previously frozen ejaculates (n = 3 bulls). Experiment 2: Aberdeen Angus ejaculates (n = 4 bulls) were split across four treatments and processed as: (1) NS fresh 3 × 106 spermatozoa, (2) Y-SS fresh at 1 × 106 spermatozoa, (3) Y-SS fresh at 2 × 106 spermatozoa and (4) X-SS fresh at 2 × 106 spermatozoa. Controls were sourced as per Experiment 1. In vitro assessments for progressive linear motility, acrosomal status and oxidative stress were carried out on Days 1, 2 and 3 after sorting (Day 0 = day of sorting. In both experiments SS fresh treatments had higher levels of agglutination in comparison to the NS fresh (P < 0.001), NS frozen treatments had the greatest PLM (P < 0.05) and NS spermatozoa exhibited higher levels of superoxide anion production compared with SS spermatozoa (P < 0.05). Experiment 1 found both fresh and frozen SS treatments had higher levels of viable acrosome-intact spermatozoa compared with the NS frozen treatments (P < 0.01).ACCEPTEDpeer-reviewe

    Predicted carcass meat yield and primal cut yields in cattle divergent in genetic merit for a terminal index

    No full text
    Several studies have clearly demonstrated the favorable impact of genetic selection on increasing beef cattle performance within the farm gate. Few studies, however, have attempted to quantify the value of genetic selection to downstream sectors of the beef industry, such as the meat processing sector. The objective of the current study was to characterize detailed carcass attributes of animals divergent in genetic merit for a terminal index as well as individual measures of genetic merit for carcass weight, conformation, and fat. The data used consisted of 53,674 young bulls and steers slaughtered between the years 2010 and 2013 in multiple Irish processing plants. All animals had a genetic evaluation as well as phenotypic measures of carcass characteristics. A terminal index, based on pedigree index for calving performance, feed intake, and carcass traits, calculated from the Irish national genetic evaluations, was obtained for each animal. Animals were categorized into four terminal index groups based on genetic merit estimates derived prior to the expression of the carcass phenotype by the animal. The association between genetic merit for terminal index with predicted phenotypic carcass red meat yield, carcass fat, carcass bone, and carcass composition, as well as between genetic merit for carcass weight, conformation, and fat with predicted phenotypic carcass red meat yield and composition were all quantified using linear mixed models. A greater terminal index value was associated with, on average, heavier phenotypic weights of each wholesale cut category. A greater terminal index value was also associated with a greater weight of meat and bone, but reduced carcass fat. Relative to animals in the lowest 25% genetic merit group, animals in the highest 25% genetic merit group had, on average, a greater predicted yield of very high value cuts (4.52 kg), high value cuts (13.13 kg), medium value cuts (6.06 kg), low value cuts (13.25 kg) as well as more total meat yield (37 kg). The results from the present study clearly signify a benefit to meat processers from breeding programs for terminal characteristics; coupled with the previously documented benefits to the producer, the benefits of breeding programs across the entire food production chain are obvious

    Genetic benefits of genomic selection breeding programmes considering foreign sire contributions

    No full text
    International audienceAbstractBackgroundIn modern dairy breeding programmes, high contributions from foreign sires are nearly always present. Genotyping, and therefore genomic selection (GS), concern only a subpopulation of the breeding programme’s wider dairy population. These features of a breeding programme contribute in different ways to the rate of genetic gain for the wider industry.MethodsA deterministic recursive gene flow model across subpopulations of animals in a dairy industry was created to predict the commercial performance of replacement heifers and future artificial insemination bulls. Various breeding strategies were assessed by varying the reliability of breeding values, the genetic contributions from subpopulations, and the genetic trend and merit of the foreign subpopulation.ResultsA higher response in the true breeding goal measured in standard deviations (SD) of true merit (G) after 20 years of selection can be achieved when genetic contributions shift towards higher merit alternatives compared to keeping them fixed. A foreign annual genetic trend of 0.08 SD of the breeding goal, while the domestic genetic trend is 0.10 SD, results in the overall net present value of genetic gain increasing by 1.2, 2.3, and 3.4% after 20 years as the reliability of GS in the domestic population increased from 0.3 to 0.45, 0.60 and 0.75. With a foreign genetic trend of 0.10 SD, these increases are more modest; 0.9, 1.7, and 2.4%. Increasing the foreign genetic trend so that it is higher than the domestic trend erodes the benefits of increasing the reliability of domestic GS further.ConclusionsHaving a foreign source of genetic material with a high rate of genetic progress contributes substantially to the benefits of domestic genetic progress while at the same time reducing the expected returns from investments to improve the accuracy of genomic prediction in the home country

    Re-ranking in International Beef Cattle Evaluations due toignoring Direct-Maternal Genetic Correlations Between Countries

    No full text
    Many traits of economical relevance in beef cattle are influenced in their phenotypic expression by the dam. Genetic evaluations of maternally affected traits require to model direct, maternal and direct-maternal genetic (co)variances next to non-genetic effects. In Interbeef beef cattle international evaluations, direct-maternal genetic correlations (rdm) may be different both within countries (rdm_WC) and between countries (rdm_BC). rdm_WC for growth traits up to weaning are often reported to be negative and significantly different from zero. As rdm_BC are difficult to estimate, these are currently assumed to be equal to zero in Interbeef evaluations. The objective of this study was to evaluate the impact of using estimated values for rdm_BC instead of assuming them to be zero, on international estimated breeding values (IEBV). We implemented two scenarios that differed only in the modelling of rdm_BC: A) the current Interbeef evaluation with assumes rdm_BC to be 0 and fits estimated rdm_WC, and B) an Interbeef evaluation in which both estimated rdm_WC and rdm_BC were fitted. Weaning weight phenotypes and pedigree information were available for more than 3 million Limousin beef cattle males and females, born between 1972 and 2017, and distributed across ten European countries. We evaluated the impact of ignoring rdm_BC on different groups of animals by comparing animals’ direct and maternal IEBV between scenarios A and B. Ignoring rdm_BC resulted in no re-ranking for direct IEBV, and limited re-ranking for maternal IEBV. Less re-ranking in maternal IEBV was observed with increasing reliability. Moreover, ignoring rdm_BC resulted in no re-ranking for publishable sires, i.e. of sires with IEBV that can be exchanged across countries. Our study suggests that the current practice of ignoring rdm_BC has limited impact on Interbeef evaluations when rdm_BC are close to 0 on average (ranging from +0.14 to -0.14) as is the case for weaning weight

    A dual targeted β-defensin and exome sequencing approach to identify, validate and functionally characterise genes associated with bull fertility

    Get PDF
    Bovine fertility remains a critical issue underpinning the sustainability of the agricultural sector. Phenotypic records collected on >7,000 bulls used in artificial insemination (AI) were used to identify 160 reliable and divergently fertile bulls for a dual strategy of targeted sequencing (TS) of fertilityrelated β-defensin genes and whole exome sequencing (WES). A haplotype spanning multiple β-defensin genes and containing 94 SNPs was significantly associated with fertility and functional analysis confirmed that sperm from bulls possessing the haplotype showed significantly enhanced binding to oviductal epithelium. WES of all exons in the genome in 24 bulls of high and low fertility identified 484 additional SNPs significantly associated with fertility. After validation, the most significantly associated SNP was located in the FOXJ3 gene, a transcription factor which regulates sperm function in mice. This study represents the first comprehensive characterisation of genetic variation in bovine β-defensin genes and functional analysis supports a role for β-defensins in regulating bull sperm function. This first application of WES in AI bulls with divergent fertility phenotypes has identified a novel role for the transcription factor FOXJ3 in the regulation of bull fertility. Validated genetic variants associated with bull fertility could prove useful for improving reproductive outcomes in cattle
    corecore