130 research outputs found

    High-frequency electron paramagnetic resonance investigation of the Fe3+ impurity center in polycrystalline PbTiO3 in its ferroelectric phase

    Full text link
    The intrinsic iron(III) impurity center in polycrystalline lead titanate was investigated by means of high-frequency electron paramagnetic resonance (EPR) spectroscopy in order to determine the local-environment sensitive fine structure parameter D. At a spectrometer frequency of 190 GHz, spectral analysis of a powder sample was unambiguously possible. The observed mean value D = +35.28 GHz can be rationalized if Fe3+ ions substitute for Ti4+ at the B-site of the perovskite ABO3 lattice forming a directly coordinated iron - oxygen vacancy defect associate. A consistent fit of the multi-frequency data necessitated use of a distribution of D values with a variance of about 1 GHz. This statistical distribution of values is probably related to more distant defects and vacancies.Comment: 6 pages, 3 figures, 1 table, to appear in J. App. Phys, 96 (2004

    Assigning the EPR fine structure parameters of the Mn(II) centers in bacillus subtilis oxalate decarboxylase by site-directed mutagenesis and DFT/MM calculations

    Get PDF
    Oxalate decarboxylase (OxDC) catalyzes the Mn-dependent conversion of the oxalate monoanion into CO2 and formate. EPR-based strategies for investigating the catalytic mechanism of decarboxylation are complicated by the difficulty of assigning the signals associated with the two Mn(II) centers located in the N- and C-terminal cupin domains of the enzyme. We now report a mutational strategy that has established the assignment of EPR fine structure parameters to each of these Mn(II) centers at pH 8.5. These experimental findings are also used to assess the performance of a multistep strategy for calculating the zero-field splitting parameters of protein-bound Mn(II) ions. Despite the known sensitivity of calculated D and E values to the computational approach, we demonstrate that good estimates of these parameters can be obtained using cluster models taken from carefully optimized DFT/MM structures. Overall, our results provide new insights into the strengths and limitations of theoretical methods for understanding electronic properties of protein-bound Mn(II) ions, thereby setting the stage for future EPR studies on the electronic properties of the Mn(II) centers in OxDC and site-specific variants

    Probing the Magnetic Anisotropy of Co(II) Complexes Featuring Redox-Active Ligands

    Get PDF
    Coordination complexes that possess large magnetic anisotropy (otherwise known as zero-field splitting, ZFS) have possible applications in the field of magnetic materials, including single molecule magnets (SMMs). Previous studies have explored the role of coordination number and geometry in controlling the magnetic anisotropy and SMM behavior of high-spin (S = 3/2) Co(II) complexes. Building upon these efforts, the present work examines the impact of ligand oxidation state and structural distortions on the spin states and ZFS parameters of pentacoordinate Co(II) complexes. The five complexes included in this study (1–5) have the general formula, [Co(TpPh2)(LX,Y)]n+ (X = O, S; Y = N, O; n = 0 or 1), where TpPh2 is the scorpionate ligand hydrotris(3,5-diphenyl-pyrazolyl)borate(1−) and LX,Y are bidentate dioxolene-type ligands that can access multiple oxidation states. The specific LX,Y ligands used herein are 4,6-di-tert-butyl substituted o-aminophenolate and o-aminothiophenolate (1 and 2, respectively), o-iminosemiquinonate and o-semiquinonate radicals (3 and 4, respectively), and o-iminobenzoquinone (5). Each complex exhibits a distorted trigonal bipyramidal geometry, as revealed by single-crystal X-ray diffraction. Direct current (dc) magnetic susceptibility experiments confirmed that the complexes with closed-shell ligands (1, 2, and 5) possess S = 3/2 ground states with negative D-values (easy-axis anisotropy) of −41, −78, and −30 cm–1, respectively. For 3 and 4, antiferromagnetic coupling between the Co(II) center and o-(imino)semiquinonate radical ligand results in S = 1 ground states that likewise exhibit very large and negative anisotropy (−100 \u3e D \u3e −140 cm–1). Notably, ZFS was measured directly for each complex using far-infrared magnetic spectroscopy (FIRMS). In combination with high-frequency and -field electron paramagnetic resonance (HFEPR) studies, these techniques provided precise spin-Hamiltonian parameters for complexes 1, 2, and 5. Multireference ab initio calculations, using the CASSCF/NEVPT2 approach, indicate that the strongly negative anisotropies of these Co(II) complexes arise primarily from distortions in the equatorial plane due to constrictions imposed by the TpPh2 ligand. This effect is further amplified by cobalt(II)-radical exchange interactions in 3 and 4

    Controlling magnetic anisotropy in a zero-dimensional S = 1 magnet using isotropic cation substitution

    Get PDF
    The [Zn1–xNix(HF2)(pyz)2]SbF6 (x = 0.2; pyz = pyrazine) solid solution exhibits a zero-field splitting (D) that is 22% larger [D = 16.2(2) K (11.3(2) cm–1)] than that observed in the x = 1 material [D = 13.3(1) K (9.2(1) cm–1)]. The substantial change in D is accomplished by an anisotropic lattice expansion in the MN4 (M = Zn or Ni) plane, wherein the increased concentration of isotropic Zn(II) ions induces a nonlinear variation in M-F and M-N bond lengths. In this, we exploit the relative donor atom hardness, where M-F and M-N form strong ionic and weak coordinate covalent bonds, respectively, the latter being more sensitive to substitution of Ni by the slightly larger Zn(II) ion. In this way, we are able to tune the single-ion anisotropy of a magnetic lattice site by Zn-substitution on nearby sites. This effect has possible applications in the field of single-ion magnets and the design of other molecule-based magnetic systems

    Enhancing easy-plane anisotropy in bespoke Ni(II) quantum magnets

    Get PDF
    We examine the crystal structures and magnetic properties of several S = 1 Ni(II) coordination compounds, molecules and polymers, that include the bridging ligands HF2-, AF62- (A = Ti, Zr) and pyrazine or non-bridging ligands F-, SiF62-, glycine, H2O, 1-vinylimidazole, 4-methylpyrazole and 3-hydroxypyridine. Pseudo-octahedral NiN4F2, NiN4O2 or NiN4OF cores consist of equatorial Ni-N bonds that are equal to or slightly longer than the axial Ni-Lax bonds. By design, the zero-field splitting (D) is large in these systems and, in the presence of substantial exchange interactions (J), can be difficult to discriminate from magnetometry measurements on powder samples. Thus, we relied on pulsed-field magnetization in those cases and employed electron-spin resonance (ESR) to confirm D when J 0) and range from ≈ 8-25 K. This work reveals a linear correlation between the ratio d(Ni-Lax)/d(Ni-Neq) and D although the ligand spectrochemical properties may also be important. We assert that this relationship allows us to predict the type of magnetocrystalline anisotropy in tailored Ni(II) quantum magnets

    Effects of Terminal Dimethylation and Metal Coordination of Proline-2-formylpyridine Thiosemicarbazone Hybrids on Lipophilicity, Antiproliferative Activity, and hR2 RNR Inhibition

    Full text link

    EPR Simulation Program

    No full text
    Software to simulate Electron Paramagnetic Resonance spectra. A portion of this work was performed at the Electron Magnetic Resonance User Facility at the National High Magnetic Field Laboratory, which is supported by the National Science Foundation Division of Materials Research and Division of Chemistry through DMR--2128556, and the State of Florida

    Crystal Environments Probed by EPR Spectroscopy. Variations in the EPR Spectra of CoII(octaethylporphyrin) Doped in Crystalline Diamagnetic Hosts and a Reassessment of the Electronic Structure of Four-Coordinate Cobalt(II)

    No full text
    [[abstract]]The powder and single-crystal EPR spectra of CoII(OEP) (OEP is the dianion of octaethylporphyrin) doped into a range of diamagnetic crystals including simple four-coordinate hosts, H2(OEP), the triclinic B form of NiII(OEP), the tetragonal form of NiII(OEP) and ZnII(OEP); five-coordinate hosts, (μ-dioxane){ZnII(OEP)}2 and (py)ZnII(OEP); six-coordinate hosts, (py)2ZnII(OEP) and (py)2MgII(OEP); and hosts containing fullerenes, C60·2ZnII(OEP)·CHCl3, C70·NiII(OEP)·C6H6·CHCl3, and C60·NiII(OEP)·2C6H6 have been obtained and analyzed. Spectra were simulated using a program that employed the exact diagonalization of the 16 × 16 complex spin Hamiltonian matrix. The EPR spectra of these doped samples are very sensitive to the environment within each crystal with the crystallographic site symmetry determining whether axial or rhombic resonance patterns are observed. For CoII(OEP) doped into tetragonal NiII(OEP) (which displays a very large g of 3.405 and a very small g of 1.544) and several other crystals containing four-coordinate metal sites, the g components could not be fit using existing theory with the assumption of the usual z2 ground state. However, reasonable agreement of the observed EPR parameters could be obtained by assuming that the unpaired electron resides in an xy orbital in the four-coordinate complexes
    corecore