34 research outputs found

    Behavioral recovery from traumatic brain injury after membrane reconstruction using polyethylene glycol

    Get PDF
    Polyethylene glycol (PEG; 2000 MW, 30% by volume) has been shown to mechanically repair damaged cellular membranes and reduce secondary axotomy after traumatic brain and spinal cord injury (TBI and SCI respectively). This repair is achieved following spontaneous reassembly of cell membranes made possible by the action of targeted hydrophilic polymers which first seal the compromised portion of the plasmalemma, and secondarily, allow the lipidic core of the compromised membranes to resolve into each other. Here we compared PEG-treated to untreated rats using a computer-managed open-field behavioral test subsequent to a standardized brain injury. Animals were evaluated after a 2-, 4-, and 6-hour delay in treatment after TBI. Treated animals receive a single subcutaneous injection of PEG. When treated within 2 hours of the injury, injured PEG-treated rats showed statistically significant improvement in their exploratory behavior recorded in the activity box when compared to untreated but brain-injured controls. A delay of 4 hours reduced this level of achievement, but a statistically significant improvement due to PEG injection was still clearly evident in most outcome measures compared at the various evaluation times. A further delay of 2 more hours, however, eradicated the beneficial effects of PEG injection as revealed using this behavioral assessment. Thus, there appears to be a critical window of time in which PEG administration after TBI can provide neuroprotection resulting in an enhanced functional recovery. As is often seen in clinically applied acute treatments for trauma, the earlier the intervention can be applied, the better the outcome

    Intravenous Polyethylene Glycol Inhibits the Loss of Cerebral Cells after Brain Injury

    Get PDF
    We have tested the effectiveness of polyethylene glycol (PEG) to restore the integrity of neuronal membranes after mechanical damage secondary to severe traumatic brain injury (TBI) produced by a standardized head injury model in rats. We provide additional detail on the standardization of this model, particularly the use and storage of foam bedding that serves to both support the animal during the impact procedure and to dampen the acceleration of the brass weight. Further, we employed a dye exclusion technique using ethidium bromide (EB; quantitative evaluation) and horseradish peroxidase (HRP; qualitative evaluation). Both have been successfully used previously to evaluate neural injury in the spinal cord since they enter cells when their plasma membranes are damaged. We quantified EB labeling (90 M in 110 L of sterile saline) after injection into the left lateral ventricle of the rat brain 2 h after injury. At six h after injection and 8 h after injury, the animals were sacrificed and the brains were analyzed. In the injured rat brain, EB entered cells lining and medial to the ventricles, particularly the axons of the corpus callosum. There was minimal EB labeling in uninjured control brains, limited to cells lining the luminal surfaces of the ventricles. Intravenous injections of PEG (1 cc of saline, 30% by volume, 2000 MW) immediately after severe TBI resulted in significantly decreased EB uptake compared with injured control animals. A similar result was achieved using the larger marker, HRP. PEG-treated brains closely resembled those of uninjured animals

    TOM40 Mediates Mitochondrial Dysfunction Induced by α-Synuclein Accumulation in Parkinson's Disease.

    Get PDF
    Alpha-synuclein (α-Syn) accumulation/aggregation and mitochondrial dysfunction play prominent roles in the pathology of Parkinson's disease. We have previously shown that postmortem human dopaminergic neurons from PD brains accumulate high levels of mitochondrial DNA (mtDNA) deletions. We now addressed the question, whether alterations in a component of the mitochondrial import machinery -TOM40- might contribute to the mitochondrial dysfunction and damage in PD. For this purpose, we studied levels of TOM40, mtDNA deletions, oxidative damage, energy production, and complexes of the respiratory chain in brain homogenates as well as in single neurons, using laser-capture-microdissection in transgenic mice overexpressing human wildtype α-Syn. Additionally, we used lentivirus-mediated stereotactic delivery of a component of this import machinery into mouse brain as a novel therapeutic strategy. We report here that TOM40 is significantly reduced in the brain of PD patients and in α-Syn transgenic mice. TOM40 deficits were associated with increased mtDNA deletions and oxidative DNA damage, and with decreased energy production and altered levels of complex I proteins in α-Syn transgenic mice. Lentiviral-mediated overexpression of Tom40 in α-Syn-transgenic mice brains ameliorated energy deficits as well as oxidative burden. Our results suggest that alterations in the mitochondrial protein transport machinery might contribute to mitochondrial impairment in α-Synucleinopathies

    Gene Expression in Human Hippocampus from Cocaine Abusers Identifies Genes which Regulate Extracellular Matrix Remodeling

    Get PDF
    The chronic effects of cocaine abuse on brain structure and function are blamed for the inability of most addicts to remain abstinent. Part of the difficulty in preventing relapse is the persisting memory of the intense euphoria or cocaine “rush”. Most abused drugs and alcohol induce neuroplastic changes in brain pathways subserving emotion and cognition. Such changes may account for the consolidation and structural reconfiguration of synaptic connections with exposure to cocaine. Adaptive hippocampal plasticity could be related to specific patterns of gene expression with chronic cocaine abuse. Here, we compare gene expression profiles in the human hippocampus from cocaine addicts and age-matched drug-free control subjects. Cocaine abusers had 151 gene transcripts upregulated, while 91 gene transcripts were downregulated. Topping the list of cocaine-regulated transcripts was RECK in the human hippocampus (FC = 2.0; p<0.05). RECK is a membrane-anchored MMP inhibitor that is implicated in the coordinated regulation of extracellular matrix integrity and angiogenesis. In keeping with elevated RECK expression, active MMP9 protein levels were decreased in the hippocampus from cocaine abusers. Pathway analysis identified other genes regulated by cocaine that code for proteins involved in the remodeling of the cytomatrix and synaptic connections and the inhibition of blood vessel proliferation (PCDH8, LAMB1, ITGB6, CTGF and EphB4). The observed microarray phenotype in the human hippocampus identified RECK and other region-specific genes that may promote long-lasting structural changes with repeated cocaine abuse. Extracellular matrix remodeling in the hippocampus may be a persisting effect of chronic abuse that contributes to the compulsive and relapsing nature of cocaine addiction

    Transancestral GWAS of alcohol dependence reveals common genetic underpinnings with psychiatric disorders

    Get PDF
    Liability to alcohol dependence (AD) is heritable, but little is known about its complex polygenic architecture or its genetic relationship with other disorders. To discover loci associated with AD and characterize the relationship between AD and other psychiatric and behavioral outcomes, we carried out the largest genome-wide association study to date of DSM-IV-diagnosed AD. Genome-wide data on 14,904 individuals with AD and 37,944 controls from 28 case-control and family-based studies were meta-analyzed, stratified by genetic ancestry (European, n = 46,568; African, n = 6,280). Independent, genome-wide significant effects of different ADH1B variants were identified in European (rs1229984; P = 9.8 x 10(-13)) and African ancestries (rs2066702; P = 2.2 x 10(-9)). Significant genetic correlations were observed with 17 phenotypes, including schizophrenia, attention deficit-hyperactivity disorder, depression, and use of cigarettes and cannabis. The genetic underpinnings of AD only partially overlap with those for alcohol consumption, underscoring the genetic distinction between pathological and nonpathological drinking behaviors.Peer reviewe

    Astrocytes Imagined

    No full text
    The cellular, molecular and physiological basis of cognition has proved elusive until emerging studies on astrocytes. The appearance of a deliberate aggregating element in cellular neurophysiology was difficult to satisfy computationally with excitatory and inhibitory neuron physiology alone. Similarly, the complex behavioral outputs of cognition are challenging to test experimentally. Astrocytic reception and control of synaptic communication has provided the possibility for study of the missing element. The advancement of genetic and neurophysiological techniques have now demonstrated astrocytes respond to neural input and subsequently provide the ability for neural synchronization and assembly at multiple and single synaptic levels. Considering the most recent evidence, it is becoming clear that astrocytes contribute to cognition. Is it possible then that our cognitive experience is essentially the domain of astrocyte physiology, ruminating on neural input, and controlling neural output? Although the molecular and cellular complexities of cognition in the human nervous system cannot be overstated, in order to gain a better understanding of the current evidence, an astrocyte centric basis of cognition will be considered from a philosophical, biological and computational perspective

    A novel open field activity detector to determine spatial and temporal movement of laboratory animals after injury and disease

    Get PDF
    Among the wide range of tests for laboratory animal behavior after neurological injury or disease, each has its benefits and drawbacks. The varied behavior that an animal exhibits makes it difficult to decide which test to use. However, a fundamental instinct for the laboratory animal is to explore when placed in a new environment. A way to test exploratory behavior is in the open field. Here, we introduce a simple activity box without the use of video equipment to determine the exploratory movement of a rat after traumatic brain injury. The activity box is an open field, and the rat explores its surroundings when placed inside. Four infrared beams are placed in both the X and Y-axes inside the box. Using a novel system to determine which beam the rat breaks, one can describe where the rat is in space and time while in the activity box. Other models can show the number of beams broken, but here we analyze the results additionally to determine the area explored, the total distance traveled by the rat, and the percent of time exploring

    Adult Astrogenesis and the Etiology of Cortical Neurodegeneration

    No full text
    As more evidence points to a clear role for astrocytes in synaptic processing, synaptogenesis and cognition, continuing research on astrocytic function could lead to strategies for neurodegenerative disease prevention. Reactive astrogliosis results in astrocyte proliferation early in injury and disease states and is considered neuroprotective, indicating a role for astrocytes in disease etiology. This review describes the different types of human cortical astrocytes and the current evidence regarding adult cortical astrogenesis in injury and degenerative disease. A role for disrupted astrogenesis as a cause of cortical degeneration, with a focus on the tauopathies and synucleinopathies, will also be considered

    The Synucleins and the Astrocyte

    No full text
    Synucleins consist of three proteins exclusively expressed in vertebrates. α-Synuclein (αS) has been identified as the main proteinaceous aggregate in Lewy bodies, a pathological hallmark of many neurodegenerative diseases. Less is understood about β-synuclein (βS) and γ-synuclein (γS), although it is known βS can interact with αS in vivo to inhibit aggregation. Likewise, both γS and βS can inhibit αS’s propensity to aggregate in vitro. In the central nervous system, βS and αS, and to a lesser extent γS, are highly expressed in the neural presynaptic terminal, although they are not strictly located there, and emerging data have shown a more complex expression profile. Synapse loss and astrocyte atrophy are early aspects of degenerative diseases of the brain and correlate with disease progression. Synucleins appear to be involved in synaptic transmission, and astrocytes coordinate and organize synaptic function, with excess αS degraded by astrocytes and microglia adjacent to the synapse. βS and γS have also been observed in the astrocyte and may provide beneficial roles. The astrocytic responsibility for degradation of αS as well as emerging evidence on possible astrocytic functions of βS and γS, warrant closer inspection on astrocyte–synuclein interactions at the synapse
    corecore