74 research outputs found

    Sample size calculation for randomized selection trials with a time‐to‐event endpoint and a margin of practical equivalence

    Get PDF
    Selection trials are used to compare potentially active experimental treatments without a control arm. While sample size calculation methods exist for binary endpoints, no such methods are available for time-to-event endpoints, even though these are ubiquitous in clinical trials. Recent selection trials have begun using progression-free survival as their primary endpoint, but have dichotomized it at a specific time point for sample size calculation and analysis. This changes the clinical question and may reduce power to detect a difference between the arms. In this article, we develop the theory for sample size calculation in selection trials where the time-to-event endpoint is assumed to follow an exponential or Weilbull distribution. We provide a free web application for sample size calculation, as well as an R package, that researchers can use in the design of their studies

    Proteomics of canine lymphoma identifies potential cancer-specific protein markers

    Get PDF
    Purpose: Early diagnosis of cancer is crucial for the success of treatment of the disease, and there is a need for markers whose differential expression between disease and normal tissue could be used as a diagnostic tool. Spontaneously occurring malignancies in pets provide a logical tool for translational research for human oncology. Lymphoma, one of the most common neoplasms in dogs, is similar to human non-Hodgkin's lymphoma and could serve as an experimental model system. Experimental Design: Thirteen lymph nodes from normal dogs and 11 lymph nodes from dogs with B-cell lymphoma were subjected to proteomic analysis using two-dimensional PAGE separation and matrix-assisted laser desorption/ionization time-of-flight analysis. Results: A total of 93 differentially expressed spots was subjected to matrix-assisted laser desorption/ionization time-of-flight tandem mass spectrometry analysis, and several proteins that showed differential expression were identified. Of these, prolidase (proline dipeptidase), triosephosphate isomerase, and glutathione S-transferase were down-regulated in lymphoma samples, whereas macrophage capping protein was up-regulated in the lymphoma samples. Conclusions: These proteins represent potential markers for the diagnosis of lymphoma and should be further investigated in human samples for validation of their utility as diagnostic markers

    Sustained low-dose treatment with the histone deacetylase inhibitor LBH589 induces terminal differentation of osteosarcoma cells

    Get PDF
    Histone deacetylase inhibitors (HDACi) were identified nearly four decades ago based on their ability to induce cellular differentiation. However, the clinical development of these compounds as cancer therapies has focused on their capacity to induce apoptosis in hematologic and lymphoid malignancies, often in combination with conventional cytotoxic agents. In many cases, HDACi doses necessary to induce these effects result in significant toxicity. Since osteosarcoma cells express markers of terminal osteoblast differentiation in response to DNA methyltransferase inhibitors, we reasoned that the epigenetic reprogramming capacity of HDACi might be exploited for therapeutic benefit. Here, we show that continuous exposure of osteosarcoma cells to low concentrations of HDACi LBH589 (Panobinostat) over a three-week period induces terminal osteoblast differentiation and irreversible senescence without inducing cell death. Remarkably, transcriptional profiling revealed that HDACi therapy initiated gene signatures characteristic of chondrocyte and adipocyte lineages in addition to marked upregulation of mature osteoblast markers. In a mouse xenograft model, continuous low dose treatment with LBH589 induced a sustained cytostatic response accompanied by induction of mature osteoblast gene expression. These data suggest that the remarkable capacity of osteosarcoma cells to differentiate in response to HDACi therapy could be exploited for therapeutic benefit without inducing systemic toxicity

    Multidrug Resistant 2009 A/H1N1 Influenza Clinical Isolate with a Neuraminidase I223R Mutation Retains Its Virulence and Transmissibility in Ferrets

    Get PDF
    Only two classes of antiviral drugs, neuraminidase inhibitors and adamantanes, are approved for prophylaxis and therapy against influenza virus infections. A major concern is that influenza virus becomes resistant to these antiviral drugs and spreads in the human population. The 2009 pandemic A/H1N1 influenza virus is naturally resistant to adamantanes. Recently a novel neuraminidase I223R mutation was identified in an A/H1N1 virus showing cross-resistance to the neuraminidase inhibitors oseltamivir, zanamivir and peramivir. However, the ability of this virus to cause disease and spread in the human population is unknown. Therefore, this clinical isolate (NL/2631-R223) was compared with a well-characterized reference virus (NL/602). In vitro experiments showed that NL/2631-I223R replicated as well as NL/602 in MDCK cells. In a ferret pathogenesis model, body weight loss was similar in animals inoculated with NL/2631-R223 or NL/602. In addition, pulmonary lesions were similar at day 4 post inoculation. However, at day 7 post inoculation, NL/2631-R223 caused milder pulmonary lesions and degree of alveolitis than NL/602. This indicated that the mutant virus was less pathogenic. Both NL/2631-R223 and a recombinant virus with a single I223R change (recNL/602-I223R), transmitted among ferrets by aerosols, despite observed attenuation of recNL/602-I223R in vitro. In conclusion, the I223R mutated virus isolate has comparable replicative ability and transmissibility, but lower pathogenicity than the reference virus based on these in vivo studies. This implies that the 2009 pandemic influenza A/H1N1 virus subtype with an isoleucine to arginine change at position 223 in the neuraminidase has the potential to spread in the human population. It is important to be vigilant for this mutation in influenza surveillance and to continue efforts to increase the arsenal of antiviral drugs to combat influenza

    Modified Needle-Tip PcrV Proteins Reveal Distinct Phenotypes Relevant to the Control of Type III Secretion and Intoxication by Pseudomonas aeruginosa

    Get PDF
    The type III secretion system (T3SS) is employed to deliver effector proteins to the cytosol of eukaryotic hosts by multiple species of Gram-negative bacteria, including Pseudomonas aeruginosa. Translocation of effectors is dependent on the proteins encoded by the pcrGVHpopBD operon. These proteins form a T3S translocator complex, composed of a needle-tip complex (PcrV), translocons (PopB and PopD), and chaperones (PcrG and PcrH). PcrV mediates the folding and insertion of PopB/PopD in host plasmic membranes, where assembled translocons form a translocation channel. Assembly of this complex and delivery of effectors through this machinery is tightly controlled by PcrV, yet the multifunctional aspects of this molecule have not been defined. In addition, PcrV is a protective antigen for P. aeruginosa infection as is the ortholog, LcrV, for Yersinia. We constructed PcrV derivatives containing in-frame linker insertions and site-specific mutations. The expression of these derivatives was regulated by a T3S-specific promoter in a pcrV-null mutant of PA103. Nine derivatives disrupted the regulation of effector secretion and constitutively released an effector protein into growth medium. Three of these regulatory mutants, in which the linker was inserted in the N-terminal globular domain, were competent for the translocation of a cytotoxin, ExoU, into eukaryotic host cells. We also isolated strains expressing a delayed-toxicity phenotype, which secrete translocators slowly despite the normal level of effector secretion. Most of the cytotoxic translocation-competent strains retained the protective epitope of PcrV derivatives, and Mab166 was able to protect erythrocytes during infection with these strains. The use of defined PcrV derivatives possessing distinct phenotypes may lead to a better understanding of the functional aspects of T3 needle-tip proteins and the development of therapeutic agents or vaccines targeting T3SS-mediated intoxication
    corecore