47 research outputs found

    Processing of the papain precursor. Purification of the zymogen and characterization of its mechanism of processing.

    Get PDF
    The precursor of the cysteine protease papain has been expressed and secreted as propapain from insect cells infected with a recombinant baculovirus expressing a synthetic gene coding for prepropapain. This 39-kDa secreted propapain zymogen molecule is glycosylated and can be processed in vitro into an enzymatically active authentic papain molecule of 24.5 kDa (Vernet, T., Tessier, D.C., Richardson, C., Laliberte, F., Khouri, H. E., Bell, A. W., Storer, A. C., and Thomas, D. Y. (1990) J. Biol. Chem. 265, 16661-16666). Recombinant propapain was stabilized with Hg2+ and purified to homogeneity using affinity chromatography, gel filtration, and ion-exchange chromatographic procedures. The maximum rate of processing in vitro was achieved at approximately pH 4.0, at a temperature of 65 degrees C and under reducing conditions. Precursor processing is inhibited by a variety of reversible and irreversible cysteine protease inhibitors but not by specific inhibitors of serine, metallo or acid proteases. Replacement by site-directed mutagenesis of the active site cysteine with a serine at position 25 also prevents processing. The inhibitor 125I-N-(2S,3S)-3-trans-hydroxycarbonyloxiran-2-carbonyl-L-tyrosine benzyl ester covalently labeled the wild type papain precursor, but not the C25S mutant, indicating that the active site is accessible to the inhibitor and is in a native conformation within the precursor. Based on biochemical and kinetic analyses of the activation and processing of propapain we have shown that the papain precursor is capable of autoproteolytic cleavage (intramolecular). Once free papain is released processing can then occur in trans (intermolecular)

    Secretion of functional papain precursor from insect cells. Requirement for N-glycosylation of the pro-region.

    Get PDF
    The synthetic gene coding for the precursor of the cysteine protease papain (EC 3.4.22.2) has been expressed using the baculovirus/insect cell system. The prepropapain gene was cloned into the transfer vector IpDC125 behind the polyhedrin promoter. The recombinant construct was then incorporated by homologous recombination into the Autographa californiaca nuclear polyhedrosis virus genome. The host Spodoptera frugiperda Sf9 cells infected with the recombinant baculovirus secrete an enzymatically inactive N-glycosylated papain precursor. This zymogen could be activated in vitro to yield about 400 nmol of active papain per liter of culture. The recombinant active mature papain was enzymatically indistinguishable from natural papain but the precursor was not processed to the same amino acid residue. The insect cells also accumulated prepropapain and glycosylated propapain intracellularly. This accumulation was an indication that there are rate-limiting steps in the secretion of proteins from insect cells in this expression system. Characterization of mutants of the precursor has shown that entry into the secretory pathway and addition of carbohydrate are prerequisite conditions for the production and secretion of functional propapain

    Phase 3, Randomized, 20-Month Study of the Efficacy and Safety of Bimatoprost Implant in Patients with Open-Angle Glaucoma and Ocular Hypertension (ARTEMIS 2)

    Get PDF
    Objective- To evaluate the intraocular pressure (IOP)-lowering efficacy and safety of 10 and 15 µg bimatoprost implant in patients with open-angle glaucoma (OAG) or ocular hypertension (OHT). Methods- This randomized, 20-month, multicenter, masked, parallel-group, phase 3 trial enrolled 528 patients with OAG or OHT and an open iridocorneal angle inferiorly in the study eye. Study eyes were administered 10 or 15 µg bimatoprost implant on day 1, week 16, and week 32, or twice-daily topical timolol maleate 0.5%. Primary endpoints were IOP and IOP change from baseline through week 12. Safety measures included treatment-emergent adverse events (TEAEs) and corneal endothelial cell density (CECD). Results- Both 10 and 15 µg bimatoprost implant met the primary endpoint of noninferiority to timolol in IOP lowering through 12 weeks. Mean IOP reductions from baseline ranged from 6.2–7.4, 6.5–7.8, and 6.1–6.7 mmHg through week 12 in the 10 µg implant, 15 µg implant, and timolol groups, respectively. IOP lowering was similar after the second and third implant administrations. Probabilities of requiring no IOP-lowering treatment for 1 year after the third administration were 77.5% (10 µg implant) and 79.0% (15 µg implant). The most common TEAE was conjunctival hyperemia, typically temporally associated with the administration procedure. Corneal TEAEs of interest (primarily corneal endothelial cell loss, corneal edema, and corneal touch) were more frequent with the 15 than the 10 µg implant and generally were reported after repeated administrations. Loss in mean CECD from baseline to month 20 was ~ 5% in 10 µg implant-treated eyes and ~ 1% in topical timolol-treated eyes. Visual field progression (change in the mean deviation from baseline) was reduced in the 10 µg implant group compared with the timolol group. Conclusions- The results corroborated the previous phase 3 study of the bimatoprost implant. The bimatoprost implant met the primary endpoint and effectively lowered IOP. The majority of patients required no additional treatment for 12 months after the third administration. The benefit-risk assessment favored the 10 over the 15 µg implant. Studies evaluating other administration regimens with reduced risk of corneal events are ongoing. The bimatoprost implant has the potential to improve adherence and reduce treatment burden in glaucoma

    The REporting of A Disproportionality Analysis for DrUg Safety Signal Detection Using Individual Case Safety Reports in PharmacoVigilance (READUS-PV):Explanation and Elaboration

    Get PDF
    In pharmacovigilance, disproportionality analyses based on individual case safety reports are widely used to detect safety signals. Unfortunately, publishing disproportionality analyses lacks specific guidelines, often leading to incomplete and ambiguous reporting, and carries the risk of incorrect conclusions when data are not placed in the correct context. The REporting of A Disproportionality analysis for drUg Safety signal detection using individual case safety reports in PharmacoVigilance (READUS-PV) statement was developed to address this issue by promoting transparent and comprehensive reporting of disproportionality studies. While the statement paper explains in greater detail the procedure followed to develop these guidelines, with this explanation paper we present the 14 items retained for READUS-PV guidelines, together with an in-depth explanation of their rationale and bullet points to illustrate their practical implementation. Our primary objective is to foster the adoption of the READUS-PV guidelines among authors, editors, peer reviewers, and readers of disproportionality analyses. Enhancing transparency, completeness, and accuracy of reporting, as well as proper interpretation of their results, READUS-PV guidelines will ultimately facilitate evidence-based decision making in pharmacovigilance.</p

    The Reporting of a Disproportionality Analysis for Drug Safety Signal Detection Using Individual Case Safety Reports in PharmacoVigilance (READUS-PV):Development and Statement

    Get PDF
    BACKGROUND AND AIM: Disproportionality analyses using reports of suspected adverse drug reactions are the most commonly used quantitative methods for detecting safety signals in pharmacovigilance. However, their methods and results are generally poorly reported in published articles and existing guidelines do not capture the specific features of disproportionality analyses. We here describe the development of a guideline (REporting of A Disproportionality analysis for drUg Safety signal detection using individual case safety reports in PharmacoVigilance [READUS-PV]) for reporting the results of disproportionality analyses in articles and abstracts.METHODS: We established a group of 34 international experts from universities, the pharmaceutical industry, and regulatory agencies, with expertise in pharmacovigilance, disproportionality analyses, and assessment of safety signals. We followed a three-step process to develop the checklist: (1) an open-text survey to generate a first list of items; (2) an online Delphi method to select and rephrase the most important items; (3) a final online consensus meeting.RESULTS: Among the panel members, 33 experts responded to round 1 and 30 to round 2 of the Delphi and 25 participated to the consensus meeting. Overall, 60 recommendations for the main body of the manuscript and 13 recommendations for the abstracts were retained by participants after the Delphi method. After merging of some items together and the online consensus meeting, the READUS-PV guidelines comprise a checklist of 32 recommendations, in 14 items, for the reporting of disproportionality analyses in the main body text and four items, comprising 12 recommendations, for abstracts.CONCLUSIONS: The READUS-PV guidelines will support authors, editors, peer-reviewers, and users of disproportionality analyses using individual case safety report databases. Adopting these guidelines will lead to more transparent, comprehensive, and accurate reporting and interpretation of disproportionality analyses, facilitating the integration with other sources of evidence.</p
    corecore