7,264 research outputs found

    Robust quantum parameter estimation: coherent magnetometry with feedback

    Get PDF
    We describe the formalism for optimally estimating and controlling both the state of a spin ensemble and a scalar magnetic field with information obtained from a continuous quantum limited measurement of the spin precession due to the field. The full quantum parameter estimation model is reduced to a simplified equivalent representation to which classical estimation and control theory is applied. We consider both the tracking of static and fluctuating fields in the transient and steady state regimes. By using feedback control, the field estimation can be made robust to uncertainty about the total spin number

    Malaria: an update on treatment of adults in non-endemic countries.

    Get PDF
    Every year people die from malaria in Britain and other industrialised countries. Most of these deaths are avoidable: they occur because a patient or doctor has underestimated the severity of the disease or has not considered the diagnosis early enough. This article provides the essential facts on treating malaria in adults in a non-endemic setting and is based on the best available evidenc

    Efficient feedback controllers for continuous-time quantum error correction

    Full text link
    We present an efficient approach to continuous-time quantum error correction that extends the low-dimensional quantum filtering methodology developed by van Handel and Mabuchi [quant-ph/0511221 (2005)] to include error recovery operations in the form of real-time quantum feedback. We expect this paradigm to be useful for systems in which error recovery operations cannot be applied instantaneously. While we could not find an exact low-dimensional filter that combined both continuous syndrome measurement and a feedback Hamiltonian appropriate for error recovery, we developed an approximate reduced-dimensional model to do so. Simulations of the five-qubit code subjected to the symmetric depolarizing channel suggests that error correction based on our approximate filter performs essentially identically to correction based on an exact quantum dynamical model

    Confirmatory factor analysis of the Test of Performance Strategies (TOPS) among adolescent athletes

    Get PDF
    The aim of the present study was to examine the factorial validity of the Test of Performance Strategies (TOPS; Thomas et al., 1999) among adolescent athletes using confirmatory factor analysis. The TOPS was designed to assess eight psychological strategies used in competition (i.e. activation, automaticity, emotional control, goal-setting, imagery, negative thinking, relaxation and self-talk,) and eight used in practice (the same strategies except negative thinking is replaced by attentional control). National-level athletes (n = 584) completed the 64-item TOPS during training camps. Fit indices provided partial support for the overall measurement model for the competition items (robust comparative fit index = 0.92, Tucker-Lewis index = 0.88, root mean square error of approximation = 0.05) but minimal support for the training items (robust comparative fit index = 0.86, Tucker-Lewis index = 0.81, root mean square error of approximation = 0.06). For the competition items, the automaticity, goal-setting, relaxation and self-talk scales showed good fit, whereas the activation, emotional control, imagery and negative thinking scales did not. For the practice items, the attentional control, emotional control, goal-setting, imagery and self-talk scales showed good fit, whereas the activation, automaticity and relaxation scales did not. Overall, it appears that the factorial validity of the TOPS for use with adolescents is questionable at present and further development is required

    Jet Substructure Without Trees

    Get PDF
    We present an alternative approach to identifying and characterizing jet substructure. An angular correlation function is introduced that can be used to extract angular and mass scales within a jet without reference to a clustering algorithm. This procedure gives rise to a number of useful jet observables. As an application, we construct a top quark tagging algorithm that is competitive with existing methods.Comment: 22 pages, 16 figures, version accepted by JHE

    Black Hole Deconstruction

    Get PDF
    A D4-D0 black hole can be deconstructed into a bound state of D0 branes with a D6-anti-D6 pair containing worldvolume fluxes. The exact spacetime solution is known and resembles a D0 accretion disk surrounding a D6-anti-D6 core. We find a scaling limit in which the disk and core drop inside an AdS_2 throat. Crossing this AdS_2 throat and the D0 accretion disk into the core, we find a second scaling region describing the D6-anti-D6 pair. It is shown that the M-theory lift of this region is AdS_3 x S^2. Surprisingly, time translations in the far asymptotic region reduce to global, rather than Poincare, time translations in this core AdS_3. We further find that the quantum mechanical ground state degeneracy reproduces the Bekenstein-Hawking entropy-area law.Comment: 11 page

    Micro-fading spectrometry: investigating the wavelength specificity of fading

    Get PDF
    A modified microfading spectrometer incorporating a linear variable filter is used to investigate the wavelength dependence of fading of traditional watercolour pigments, dosimeters and fading standards at a higher spectral resolution and/or sampling than had previously been attempted. While the wavelength dependence of photochemical damage was largely found to correlate well with the absorption spectra of each material, exceptions were found in the case of Prussian blue and Prussian green pigments (the latter includes Prussian blue), for which an anti-correlation between the spectral colour change and the absorption spectrum was found

    Longer fixation duration while viewing face images

    Get PDF
    The spatio-temporal properties of saccadic eye movements can be influenced by the cognitive demand and the characteristics of the observed scene. Probably due to its crucial role in social communication, it is argued that face perception may involve different cognitive processes compared with non-face object or scene perception. In this study, we investigated whether and how face and natural scene images can influence the patterns of visuomotor activity. We recorded monkeys’ saccadic eye movements as they freely viewed monkey face and natural scene images. The face and natural scene images attracted similar number of fixations, but viewing of faces was accompanied by longer fixations compared with natural scenes. These longer fixations were dependent on the context of facial features. The duration of fixations directed at facial contours decreased when the face images were scrambled, and increased at the later stage of normal face viewing. The results suggest that face and natural scene images can generate different patterns of visuomotor activity. The extra fixation duration on faces may be correlated with the detailed analysis of facial features
    corecore