7,264 research outputs found
Robust quantum parameter estimation: coherent magnetometry with feedback
We describe the formalism for optimally estimating and controlling both the
state of a spin ensemble and a scalar magnetic field with information obtained
from a continuous quantum limited measurement of the spin precession due to the
field. The full quantum parameter estimation model is reduced to a simplified
equivalent representation to which classical estimation and control theory is
applied. We consider both the tracking of static and fluctuating fields in the
transient and steady state regimes. By using feedback control, the field
estimation can be made robust to uncertainty about the total spin number
Malaria: an update on treatment of adults in non-endemic countries.
Every year people die from malaria in Britain and other industrialised countries. Most of these deaths are avoidable: they occur because a patient or doctor has underestimated the severity of the disease or has not considered the diagnosis early enough. This article provides the essential facts on treating malaria in adults in a non-endemic setting and is based on the best available evidenc
Efficient feedback controllers for continuous-time quantum error correction
We present an efficient approach to continuous-time quantum error correction
that extends the low-dimensional quantum filtering methodology developed by van
Handel and Mabuchi [quant-ph/0511221 (2005)] to include error recovery
operations in the form of real-time quantum feedback. We expect this paradigm
to be useful for systems in which error recovery operations cannot be applied
instantaneously. While we could not find an exact low-dimensional filter that
combined both continuous syndrome measurement and a feedback Hamiltonian
appropriate for error recovery, we developed an approximate reduced-dimensional
model to do so. Simulations of the five-qubit code subjected to the symmetric
depolarizing channel suggests that error correction based on our approximate
filter performs essentially identically to correction based on an exact quantum
dynamical model
Confirmatory factor analysis of the Test of Performance Strategies (TOPS) among adolescent athletes
The aim of the present study was to examine the factorial validity of the Test of Performance Strategies (TOPS; Thomas et al., 1999) among adolescent athletes using confirmatory factor analysis. The TOPS was designed to assess eight psychological strategies used in competition (i.e. activation, automaticity, emotional control, goal-setting, imagery, negative thinking, relaxation and self-talk,) and eight used in practice (the same strategies except negative thinking is replaced by attentional control). National-level athletes (n = 584) completed the 64-item TOPS during training camps. Fit indices provided partial support for the overall measurement model for the competition items (robust comparative fit index = 0.92, Tucker-Lewis index = 0.88, root mean square error of approximation = 0.05) but minimal support for the training items (robust comparative fit index = 0.86, Tucker-Lewis index = 0.81, root mean square error of approximation = 0.06). For the competition items, the automaticity, goal-setting, relaxation and self-talk scales showed good fit, whereas the activation, emotional control, imagery and negative thinking scales did not. For the practice items, the attentional control, emotional control, goal-setting, imagery and self-talk scales showed good fit, whereas the activation, automaticity and relaxation scales did not. Overall, it appears that the factorial validity of the TOPS for use with adolescents is questionable at present and further development is required
Jet Substructure Without Trees
We present an alternative approach to identifying and characterizing jet
substructure. An angular correlation function is introduced that can be used to
extract angular and mass scales within a jet without reference to a clustering
algorithm. This procedure gives rise to a number of useful jet observables. As
an application, we construct a top quark tagging algorithm that is competitive
with existing methods.Comment: 22 pages, 16 figures, version accepted by JHE
Black Hole Deconstruction
A D4-D0 black hole can be deconstructed into a bound state of D0 branes with
a D6-anti-D6 pair containing worldvolume fluxes. The exact spacetime solution
is known and resembles a D0 accretion disk surrounding a D6-anti-D6 core. We
find a scaling limit in which the disk and core drop inside an AdS_2 throat.
Crossing this AdS_2 throat and the D0 accretion disk into the core, we find a
second scaling region describing the D6-anti-D6 pair. It is shown that the
M-theory lift of this region is AdS_3 x S^2. Surprisingly, time translations in
the far asymptotic region reduce to global, rather than Poincare, time
translations in this core AdS_3. We further find that the quantum mechanical
ground state degeneracy reproduces the Bekenstein-Hawking entropy-area law.Comment: 11 page
Recommended from our members
Group 2 Innate Lymphoid Cells Are Redundant in Experimental Renal Ischemia-Reperfusion Injury.
Acute kidney injury (AKI) can be fatal and is a well-defined risk factor for the development of chronic kidney disease. Group 2 innate lymphoid cells (ILC2s) are innate producers of type-2 cytokines and are critical regulators of homeostasis in peripheral organs. However, our knowledge of their function in the kidney is relatively limited. Recent evidence suggests that increasing ILC2 numbers by systemic administration of recombinant interleukin (IL)-25 or IL-33 protects against renal injury. Whilst ILC2s can be induced to protect against ischemic- or chemical-induced AKI, the impact of ILC2 deficiency or depletion on the severity of renal injury is unknown. Firstly, the phenotype and location of ILC2s in the kidney was assessed under homeostatic conditions. Kidney ILC2s constitutively expressed high levels of IL-5 and were located in close proximity to the renal vasculature. To test the functional role of ILC2s in the kidney, an experimental model of renal ischemia-reperfusion injury (IRI) was used and the severity of injury was assessed in wild-type, ILC2-reduced, ILC2-deficient, and ILC2-depleted mice. Surprisingly, there were no differences in histopathology, collagen deposition or mRNA expression of injury-associated (Lcn2), inflammatory (Cxcl1, Cxcl2, and Tnf) or extracellular matrix (Col1a1, Fn1) factors following IRI in the absence of ILC2s. These data suggest the absence of ILC2s does not alter the severity of renal injury, suggesting possible redundancy. Therefore, other mechanisms of type 2-mediated immune cell activation likely compensate in the absence of ILC2s. Hence, a loss of ILC2s is unlikely to increase susceptibility to, or severity of AKI
Micro-fading spectrometry: investigating the wavelength specificity of fading
A modified microfading spectrometer incorporating a linear variable filter is used to investigate the wavelength dependence of fading of traditional watercolour pigments, dosimeters and fading standards at a higher spectral resolution and/or sampling than had previously been attempted. While the wavelength dependence of photochemical damage was largely found to correlate well with the absorption spectra of each material, exceptions were found in the case of Prussian blue and Prussian green pigments (the latter includes Prussian blue), for which an anti-correlation between the spectral colour change and the absorption spectrum was found
Longer fixation duration while viewing face images
The spatio-temporal properties of saccadic eye movements can be influenced by the cognitive demand and the characteristics of the observed scene. Probably due to its crucial role in social communication, it is argued that face perception may involve different cognitive processes compared with non-face object or scene perception. In this study, we investigated whether and how face and natural scene images can influence the patterns of visuomotor activity. We recorded monkeys’ saccadic eye movements as they freely viewed monkey face and natural scene images. The face and natural scene images attracted similar number of fixations, but viewing of faces was accompanied by longer fixations compared with natural scenes. These longer fixations were dependent on the context of facial features. The duration of fixations directed at facial contours decreased when the face images were scrambled, and increased at the later stage of normal face viewing. The results suggest that face and natural scene images can generate different patterns of visuomotor activity. The extra fixation duration on faces may be correlated with the detailed analysis of facial features
- …
