49 research outputs found

    Spectral characterization and unmixing of intrinsic contrast in intact normal and diseased gastric tissues using hyperspectral two-photon microscopy

    Get PDF
    Background: Living tissues contain a range of intrinsic fluorophores and sources of second harmonic generation which provide contrast that can be exploited for fresh tissue imaging. Microscopic imaging of fresh tissue samples can circumvent the cost and time associated with conventional histology. Further, intrinsic contrast can provide rich information about a tissue\u27s composition, structure and function, and opens the potential for in-vivo imaging without the need for contrast agents. Methodology/Principal Findings: In this study, we used hyperspectral two-photon microscopy to explore the characteristics of both normal and diseased gastrointestinal (GI) tissues, relying only on their endogenous fluorescence and second harmonic generation to provide contrast. We obtained hyperspectral data at subcellular resolution by acquiring images over a range of two-photon excitation wavelengths, and found excitation spectral signatures of specific tissue types based on our ability to clearly visualize morphology. We present the two-photon excitation spectral properties of four major tissue types that are present throughout the GI tract: epithelium, lamina propria, collagen, and lymphatic tissue. Using these four excitation signatures as basis spectra, linear unmixing strategies were applied to hyperspectral data sets of both normal and neoplastic tissue acquired in the colon and small intestine. Our results show that hyperspectral unmixing with excitation spectra allows segmentation, showing promise for blind identification of tissue types within a field of view, analogous to specific staining in conventional histology. The intrinsic spectral signatures of these tissue types provide information relating to their biochemical composition. Conclusions/Significance: These results suggest hyperspectral two-photon microscopy could provide an alternative to conventional histology either for in-situ imaging, or intraoperative \u27instant histology\u27 of fresh tissue biopsies. © 2011 Grosberg et al

    Spectral Characterization and Unmixing of Intrinsic Contrast in Intact Normal and Diseased Gastric Tissues Using Hyperspectral Two-Photon Microscopy

    Get PDF
    Living tissues contain a range of intrinsic fluorophores and sources of second harmonic generation which provide contrast that can be exploited for fresh tissue imaging. Microscopic imaging of fresh tissue samples can circumvent the cost and time associated with conventional histology. Further, intrinsic contrast can provide rich information about a tissue's composition, structure and function, and opens the potential for in-vivo imaging without the need for contrast agents.In this study, we used hyperspectral two-photon microscopy to explore the characteristics of both normal and diseased gastrointestinal (GI) tissues, relying only on their endogenous fluorescence and second harmonic generation to provide contrast. We obtained hyperspectral data at subcellular resolution by acquiring images over a range of two-photon excitation wavelengths, and found excitation spectral signatures of specific tissue types based on our ability to clearly visualize morphology. We present the two-photon excitation spectral properties of four major tissue types that are present throughout the GI tract: epithelium, lamina propria, collagen, and lymphatic tissue. Using these four excitation signatures as basis spectra, linear unmixing strategies were applied to hyperspectral data sets of both normal and neoplastic tissue acquired in the colon and small intestine. Our results show that hyperspectral unmixing with excitation spectra allows segmentation, showing promise for blind identification of tissue types within a field of view, analogous to specific staining in conventional histology. The intrinsic spectral signatures of these tissue types provide information relating to their biochemical composition.These results suggest hyperspectral two-photon microscopy could provide an alternative to conventional histology either for in-situ imaging, or intraoperative 'instant histology' of fresh tissue biopsies

    Rectal Optical Markers for In-vivo Risk Stratification of Premalignant Colorectal Lesions.

    Get PDF
    Purpose: Colorectal cancer remains the second leading cause of cancer deaths in the U.S. despite being eminently preventable by colonoscopy via removal of premalignant adenomas. In order to more effectively reduce colorectal cancer mortality, improved screening paradigms are needed. Our group pioneered the use of low coherence enhanced backscattering (LEBS) spectroscopy to detect the presence of adenomas throughout the colon via optical interrogation of the rectal mucosa. In a previous ex-vivo biopsy study of 219 patients, LEBS demonstrated excellent diagnostic potential with 89.5% accuracy for advanced adenomas. The objective of the current cross-sectional study is to assess the viability of rectal LEBS in-vivo. Experimental Design: Measurements from 619 patients were taken using a minimally invasive 3.4 mm diameter LEBS probe introduced into the rectum via anoscope or direct insertion, requiring ~1 minute from probe insertion to withdrawal. The diagnostic LEBS marker was formed as a logistic regression of the optical reduced scattering coefficient μs∗ and mass density distribution factor D. Results: The rectal LEBS marker was significantly altered in patients harboring advanced adenomas and multiple non-advanced adenomas throughout the colon. Blinded and cross-validated test performance characteristics showed 88% sensitivity to advanced adenomas, 71% sensitivity to multiple non-advanced adenomas, and 72% specificity in the validation set. Conclusions: We demonstrate the viability of in-vivo LEBS measurement of histologically normal rectal mucosa to predict the presence of clinically relevant adenomas throughout the colon. The current work represents the next step in the development of rectal LEBS as a tool for colorectal cancer risk stratification

    Skeletal Light-Scattering Accelerates Bleaching Response in Reef-Building Corals

    Get PDF
    Background At the forefront of ecosystems adversely affected by climate change, coral reefs are sensitive to anomalously high temperatures which disassociate (bleaching) photosynthetic symbionts (Symbiodinium) from coral hosts and cause increasingly frequent and severe mass mortality events. Susceptibility to bleaching and mortality is variable among corals, and is determined by unknown proportions of environmental history and the synergy of Symbiodinium- and coral-specific properties. Symbiodinium live within host tissues overlaying the coral skeleton, which increases light availability through multiple light-scattering, forming one of the most efficient biological collectors of solar radiation. Light-transport in the upper ~200 μm layer of corals skeletons (measured as ‘microscopic’ reduced-scattering coefficient, μ′S,m), has been identified as a determinant of excess light increase during bleaching and is therefore a potential determinant of the differential rate and severity of bleaching response among coral species. Results Here we experimentally demonstrate (in ten coral species) that, under thermal stress alone or combined thermal and light stress, low-μ′S,m corals bleach at higher rate and severity than high-μ′S,m corals and the Symbiodinium associated with low-μ′S,m corals experience twice the decrease in photochemical efficiency. We further modelled the light absorbed by Symbiodinium due to skeletal-scattering and show that the estimated skeleton-dependent light absorbed by Symbiodinium (per unit of photosynthetic pigment) and the temporal rate of increase in absorbed light during bleaching are several fold higher in low-μ′S,m corals. Conclusions While symbionts associated with low-μ′S,m corals receive less total light from the skeleton, they experience a higher rate of light increase once bleaching is initiated and absorbing bodies are lost; further precipitating the bleaching response. Because microscopic skeletal light-scattering is a robust predictor of light-dependent bleaching among the corals assessed here, this work establishes μ′S,m as one of the key determinants of differential bleaching response

    Measurement of optical scattering properties with low-coherence enhanced backscattering spectroscopy

    No full text
    Low-coherence enhanced backscattering (LEBS) is a depth selective technique that allows noninvasive characterization of turbid media such as biological tissue. LEBS provides a spectral measurement of the tissue reflectance distribution as a function of distance between incident and reflected ray pairs through the use of partial spatial coherence broadband illumination. We present LEBS as a new depth-selective technique to measure optical properties of tissue in situ. Because LEBS enables measurements of reflectance due to initial scattering events, LEBS is sensitive to the shape of the phase function in addition to the reduced scattering coefficient (\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}\mu _s^{\bf *}\end{equation*} \end{document}μs*). We introduce a simulation of LEBS that implements a two parameter phase function based on the Whittle–Matérn refractive index correlation function model. We show that the LEBS enhancement factor (E) primarily depends on \documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{upgreek} \usepackage{mathrsfs} \setlength{\oddsidemargin}{-69pt} \begin{document} \begin{equation*}\mu _s^{\bf *}\end{equation*} \end{document}μs*, the normalized spectral dependence of E (Sn) depends on one of the two parameters of the phase function that also defines the functional type of the refractive index correlation function (m), and the LEBS peak width depends on both the anisotropy factor (g) and m. Three inverse models for calculating these optical properties are described and the calculations are validated with an experimental measurement from a tissue phantom
    corecore