33 research outputs found

    Early Initiation of Antiretroviral Therapy Preserves the Metabolic Function of CD4+ T Cells in Subtype C Human Immunodeficiency Virus 1 Infection

    Get PDF
    Background: Immune dysfunction often persists in people living with human immunodeficiency virus (HIV) who are on antiretroviral therapy (ART), clinically manifesting as HIV-1-associated comorbid conditions. Early ART initiation may reduce incidence of HIV-1–associated immune dysfunction and comorbid conditions. Immunometabolism is a critical determinant of functional immunity. We investigated the effect of HIV-1 infection and timing of ART initiation on CD4+ T cell metabolism and function. // Methods: Longitudinal blood samples from people living with HIV who initiated ART during hyperacute HIV-1 infection (HHI; before peak viremia) or chronic HIV-1 infection (CHI) were assessed for the metabolic and immune functions of CD4+ T cells. Metabolite uptake and mitochondrial mass were measured using fluorescent analogues and MitoTracker Green accumulation, respectively, and were correlated with CD4+ T cell effector functions. // Results: Initiation of ART during HHI prevented dysregulation of glucose uptake by CD4+ T cells, but glucose uptake was reduced before and after ART initiation in CHI. Glucose uptake positively correlated with interleukin-2 and tumor necrosis factor-α production by CD4+ T cells. CHI was associated with elevated mitochondrial mass in effector memory CD4+ T cells that persisted after ART and correlated with PD-1 expression. // Conclusions: ART initiation in HHI largely prevented metabolic impairment of CD4+ T cells. ART initiation in CHI was associated with persistently dysregulated immunometabolism of CD4+ T cells, which was associated with impaired cellular functions and exhaustion

    The PTPN22 Locus and Rheumatoid Arthritis: No Evidence for an Effect on Risk Independent of Arg620Trp

    Get PDF
    The Trp(620) allotype of PTPN22 confers susceptibility to rheumatoid arthritis (RA) and certain other classical autoimmune diseases. There has been a report of other variants within the PTPN22 locus that alter risk of RA; protective haplotype '5', haplotype group '6-10' and susceptibility haplotype '4', suggesting the possibility of other PTPN22 variants involved in the pathogenesis of RA independent of R620W (rs2476601). Our aim was to further investigate this possibility.A total of 4,460 RA cases and 4,481 controls, all European, were analysed. Single nucleotide polymorphisms rs3789607, rs12144309, rs3811021 and rs12566340 were genotyped over New Zealand (NZ) and UK samples. Publically-available Wellcome Trust Case Control Consortium (WTCCC) genotype data were used.The protective effect of haplotype 5 was confirmed (rs3789607; (OR = 0.91, P = 0.016), and a second protective effect (possibly of haplotype 6) was observed (rs12144309; OR = 0.90, P = 0.021). The previously reported susceptibility effect of haplotype 4 was not replicated; instead a protective effect was observed (rs3811021; OR = 0.85, P = 1.4×10(-5)). Haplotypes defined by rs3789607, rs12144309 and rs3811021 coalesced with the major allele of rs12566340 within the adjacent BFK (B-cell lymphoma 2 (BCL2) family kin) gene. We, therefore, tested rs12566340 for association with RA conditional on rs2476601; there was no evidence for an independent effect at rs12566340 (P = 0.76). Similarly, there was no evidence for an independent effect at rs12566340 in type 1 diabetes (P = 0.85).We have no evidence for a common variant additional to rs2476601 within the PTPN22 locus that influences the risk of RA. Arg620Trp is almost certainly the single common causal variant

    The ITGAV rs3738919 variant and susceptibility to rheumatoid arthritis in four Caucasian sample sets

    Get PDF
    INTRODUCTION: Angiogenesis is an important process in the development of destructive synovial pannus in rheumatoid arthritis (RA). The ITGAV +gene encodes a cell cycle-associated antigen, integrin alphanubeta 3, which plays a role in RA angiogenesis. Previously, two independent studies identified an association between the major allele of the ITGAV single-nucleotide polymorphism (SNP) rs3738919 and RA. We therefore tested this association in an independent study using New Zealand (NZ) and Oxford (UK) RA case control samples. METHODS: We compared genotype frequencies in 740 NZ Caucasian RA patients and 553 controls genotyped for rs3738919, using a polymerase chain reaction-restriction fragment length polymorphism assay. A TaqMan genotyping SNP assay was used to type 713 Caucasian RA patients and 515 control samples from Oxford for the rs3738919 variant. Association of rs3738919 with RA was tested in these two sample sets using the chi-square goodness-of-fit test. The Mantel-Haenszel test was used to perform a meta-analysis, combining the genetic results from four independent Caucasian case control cohorts, consisting of 3,527 cases and 4,126 controls. Haplotype analysis was also performed using SNPs rs3911238, rs10174098 and rs3738919 in the Wellcome Trust Case Control Consortium, NZ and Oxford case control samples. RESULTS: We found no evidence for association between ITGAV and RA in either the NZ or Oxford sample set (odds ratio [OR] = 0.88, P(allelic) = 0.11 and OR = 1.18, P(allelic) = 0.07, respectively). Inclusion of these data in a meta-analysis (random effects) of four independent cohorts (3,527 cases and 4,126 controls) weakens support for the hypothesis that rs3738919 plays a role in the development of RA (OR(combined) = 0.92, 95% confidence interval 0.80 to 1.07; P = 0.29). No consistent haplotype associations were evident. CONCLUSIONS: Association of ITGAV SNP rs7378919 with RA was not replicated in NZ or Oxford case control sample sets. Meta-analysis of these and previously published data lends limited support for a role for the ITGAV in RA in Caucasians of European ancestry

    Natural Killer Cell Education Is Associated With a Distinct Glycolytic Profile

    Get PDF
    NK cells expressing self-inhibitory receptors display increased functionality compared to NK cells lacking those receptors. The acquisition of functional competence in these particular NK-cell subsets is termed education. Little is known about the underlying mechanisms that lead to the functional differences between educated and uneducated NK cells. An increasing number of studies suggest that cellular metabolism is a determinant of immune cell functions. Thus, alterations in cellular metabolic pathways may play a role in the process of NK-cell education. Here, we compared the glycolytic profile of educated and uneducated primary human NK cells. KIR-educated NK cells showed significantly increased expression levels of the glucose transporter Glut1 in comparison to NKG2A-educated or uneducated NK cells with and without exposure to target cells. Subsequently, the metabolic profile of NK-cell subsets was determined using a Seahorse XF Analyzer. Educated NK cells displayed significantly higher rates of cellular glycolysis than uneducated NK cells even in a resting state. Our results indicate that educated and uneducated NK cells reside in different metabolic states prior to activation. These differences in the ability to utilize glucose may represent an underlying mechanism for the superior functionality of educated NK cells expressing self-inhibitory receptors

    Fast acting allosteric phosphofructokinase inhibitors block trypanosome glycolysis and cure acute African trypanosomiasis in mice

    Get PDF
    The parasitic protist Trypanosoma brucei is the causative agent of Human African Trypanosomiasis, also known as sleeping sickness. The parasite enters the blood via the bite of the tsetse fly where it is wholly reliant on glycolysis for the production of ATP. Glycolytic enzymes have been regarded as challenging drug targets because of their highly conserved active sites and phosphorylated substrates. We describe the development of novel small molecule allosteric inhibitors of trypanosome phosphofructokinase (PFK) that block the glycolytic pathway resulting in very fast parasite kill times with no inhibition of human PFKs. The compounds cross the blood brain barrier and single day oral dosing cures parasitaemia in a stage 1 animal model of human African trypanosomiasis. This study demonstrates that it is possible to target glycolysis and additionally shows how differences in allosteric mechanisms may allow the development of species-specific inhibitors to tackle a range of proliferative or infectious diseases

    Act now against new NHS competition regulations: an open letter to the BMA and the Academy of Medical Royal Colleges calls on them to make a joint public statement of opposition to the amended section 75 regulations.

    Get PDF

    Breast cancer management pathways during the COVID-19 pandemic: outcomes from the UK ‘Alert Level 4’ phase of the B-MaP-C study

    Get PDF
    Abstract: Background: The B-MaP-C study aimed to determine alterations to breast cancer (BC) management during the peak transmission period of the UK COVID-19 pandemic and the potential impact of these treatment decisions. Methods: This was a national cohort study of patients with early BC undergoing multidisciplinary team (MDT)-guided treatment recommendations during the pandemic, designated ‘standard’ or ‘COVID-altered’, in the preoperative, operative and post-operative setting. Findings: Of 3776 patients (from 64 UK units) in the study, 2246 (59%) had ‘COVID-altered’ management. ‘Bridging’ endocrine therapy was used (n = 951) where theatre capacity was reduced. There was increasing access to COVID-19 low-risk theatres during the study period (59%). In line with national guidance, immediate breast reconstruction was avoided (n = 299). Where adjuvant chemotherapy was omitted (n = 81), the median benefit was only 3% (IQR 2–9%) using ‘NHS Predict’. There was the rapid adoption of new evidence-based hypofractionated radiotherapy (n = 781, from 46 units). Only 14 patients (1%) tested positive for SARS-CoV-2 during their treatment journey. Conclusions: The majority of ‘COVID-altered’ management decisions were largely in line with pre-COVID evidence-based guidelines, implying that breast cancer survival outcomes are unlikely to be negatively impacted by the pandemic. However, in this study, the potential impact of delays to BC presentation or diagnosis remains unknown

    Changes in immune cell populations following KappaMab, lenalidomide and low‐dose dexamethasone treatment in multiple myeloma

    No full text
    Abstract Objectives Lenalidomide (LEN) is used to treat multiple myeloma (MM) and shows in vitro synergy with KappaMab (KM), a chimeric antibody specific for Kappa Myeloma antigen, an antigen exclusively expressed on the surface of kappa‐restricted MM cells. Lenalidomide, dexamethasone (DEX) and KM control MM via multiple immunomodulatory mechanisms; however, there are several additional effects of the drug combination on immune cells. Lenalidomide can increase T cell and NKT cell cytotoxicity and dendritic cell (DC) activation in vitro. We investigated the immune cell populations in bone marrow of patients treated with KM, LEN and low‐dose DEX in kappa‐restricted relapsed/refractory MM ex vivo and assessed association of those changes with patient outcome. Methods A cohort (n = 40) of patients with kappa‐restricted relapsed/refractory MM, treated with KM, LEN and low‐dose DEX, was analysed using a mass cytometry panel that allowed identification of immune cell subsets. Clustering analyses were used to determine significant changes in immune cell populations at time periods after treatment. Results We found changes in five DC and 17 T‐cell populations throughout treatment. We showed an increase in activated conventional DC populations, a decrease in immature/precursor DC populations, a decrease in activated CD4 T cells and an increase in effector‐memory CD4 T cells and effector CD8 T cells, indicating an activated immune response. Conclusion These data characterise the effects of LEN, DEX, and KM treatment on non‐target immune cells in MM. Treatment may support destruction of MM cells by both direct action and indirect mechanisms via immune cells

    Natural Killer Cell Education Is Associated With a Distinct Glycolytic Profile

    No full text
    NK cells expressing self-inhibitory receptors display increased functionality compared to NK cells lacking those receptors. The acquisition of functional competence in these particular NK-cell subsets is termed education. Little is known about the underlying mechanisms that lead to the functional differences between educated and uneducated NK cells. An increasing number of studies suggest that cellular metabolism is a determinant of immune cell functions. Thus, alterations in cellular metabolic pathways may play a role in the process of NK-cell education. Here, we compared the glycolytic profile of educated and uneducated primary human NK cells. KIR-educated NK cells showed significantly increased expression levels of the glucose transporter Glut1 in comparison to NKG2A-educated or uneducated NK cells with and without exposure to target cells. Subsequently, the metabolic profile of NK-cell subsets was determined using a Seahorse XF Analyzer. Educated NK cells displayed significantly higher rates of cellular glycolysis than uneducated NK cells even in a resting state. Our results indicate that educated and uneducated NK cells reside in different metabolic states prior to activation. These differences in the ability to utilize glucose may represent an underlying mechanism for the superior functionality of educated NK cells expressing self-inhibitory receptors
    corecore