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NK cells expressing self-inhibitory receptors display increased functionality compared

to NK cells lacking those receptors. The acquisition of functional competence in these

particular NK-cell subsets is termed education. Little is known about the underlying

mechanisms that lead to the functional differences between educated and uneducated

NK cells. An increasing number of studies suggest that cellular metabolism is a

determinant of immune cell functions. Thus, alterations in cellular metabolic pathways

may play a role in the process of NK-cell education. Here, we compared the glycolytic

profile of educated and uneducated primary human NK cells. KIR-educated NK cells

showed significantly increased expression levels of the glucose transporter Glut1 in

comparison to NKG2A-educated or uneducated NK cells with and without exposure to

target cells. Subsequently, the metabolic profile of NK-cell subsets was determined using

a Seahorse XF Analyzer. Educated NK cells displayed significantly higher rates of cellular

glycolysis than uneducated NK cells even in a resting state. Our results indicate that

educated and uneducated NK cells reside in different metabolic states prior to activation.

These differences in the ability to utilize glucose may represent an underlying mechanism

for the superior functionality of educated NK cells expressing self-inhibitory receptors.

Keywords: HLA class I, metabolism, NK-cell education, glycolysis, Glut1, killer-cell immunoglobulin-like receptor

(KIR), cytotoxicity

INTRODUCTION

Natural killer (NK) cells are a subset of lymphocytes that play a central role in the innate
immune defense against tumors and viral infections (1). NK cells exert cytotoxicity toward aberrant
target cells through release of cytolytic proteins, such as perforin and granzymes, and produce
pro-inflammatory cytokines, such as IFN-γ and TNF-α. In addition to their role as cytotoxic
effector cells, NK cells also function as immune regulators, influencing the maturation and
activation of dendritic cells, macrophages, and T cells (2). NK-cell function is highly dependent
upon the integration of signals derived from a variety of activating and inhibitory receptors
expressed on the cell surface (3).

Activating NK-cell receptors mainly recognize cellular stress ligands that are upregulated on
transformed or virus-infected host cells. In contrast, several inhibitory receptors are able to
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recognize human leucocyte antigen (HLA) class I molecules,
which are ubiquitously expressed on the surface of nucleated
cells. In humans, HLA class I-specific inhibitory receptors
include the germline encoded killer-cell immunoglobulin-
like receptor (KIR) family and the lectin-like CD94-NKG2A
heterodimer (4–6). The 14 members of the KIR family are
predominantly expressed on mature NK cells (7) and possess
different specificities for HLA class I molecules (8). The
inhibitory receptors KIR2DL1, KIR2DL2, KIR2DL3 recognize
HLA-C molecules with different affinities (9, 10). Based on
sequence polymorphism at amino acid position 80, HLA-C
molecules can be subdivided into two principal groups: HLA-C
group 2 (Lys80) and HLA-C group 1 (Asn80) (11, 12). KIR2DL1
binds exclusively to HLA-C group 2 allotypes, whereas KIR2DL3
recognizes HLA-C group 1 molecules. KIR2DL2, separating
as a distinct allele from KIR2DL3, shows affinities for both
groups (13). In contrast, KIR3DL1 recognizes HLA-A and HLA-
Bmolecules expressing the Bw4 epitope (14, 15). Finally, the non-
classical HLA-E molecule serves as a ligand for CD94/NKG2A
(16). Subsequent interaction of inhibitory NK cell receptors with
their HLA class I ligand on healthy host cells prevents NK
cell activation and provides self-tolerance (17). Virus-infected or
malignant host cells may downregulate HLA class I molecules to
evade recognition by T cells (18). NK cells, however, are able to
sense the absence of self-HLA class I molecules through the loss
of inhibitory signals leading to NK-cell activation and target cell
killing (“missing self ”) (19, 20).

The NK-cell pool of every individual is characterized by a
high diversity, determined by the receptors expressed on a single-
cell level. A given NK cell can (i) express inhibitory receptors
that recognize host HLA class I molecules leading to self-
tolerance (self-inhibitory), (ii) express inhibitory receptors that
fail to interact with host HLA class I molecules in individuals
lacking cognate HLA class I ligands for these receptors, or
(iii) lack inhibitory receptors all together. Several studies have
shown that certain KIRs in combination with the cognate
HLA class I-haplotype affect NK-cell effector potency (21). NK
cells that lack self-inhibitory receptors have been shown to be
hyporesponsive after exposure to MHC class I devoid target
cells (20, 22–25). Consequently, the observed differences in NK-
cell responsiveness are determined by the inhibitory receptor
repertoire expressed by each NK cell and the corresponding HLA
class I haplotype of the host. The process that regulates the level of
NK-cell responsiveness is defined as NK-cell education (22, 26).

Several models of NK-cell education hypothesize how NK-
cell responsiveness is achieved, but the molecular mechanisms
underlying NK-cell education are not well understood. Recent
studies in the field of immunometabolism have revealed that
cellular metabolism is able to shape immune cell effector
functions (27) which suggests that NK-cell metabolism might
play a role in education as well. Mature naive T cells undergo
metabolic remodeling following immune activation through
T cell receptor ligation. Activated T cells switch from a
metabolically quiescent state to a program in which aerobic
glycolysis is upregulated (28). As cells proliferate, expression of
nutrient transporters is induced on the cell surface (29). It has
been shown that the glucose transporter Glut1 is critical for T

cell growth and proliferation and that its knockdown results
in suppressed glycolytic function and impaired proliferation in
human T cells (30). Aligned with these findings, recent reports
have shown that metabolic processes are essential for NK-cell
effector functions (31). By limiting the rate of glycolysis, NK-
cell effector functions, such as IFN-γ production and granzyme
B expression, are inhibited (32). Given the link between distinct
metabolic profiles and immune effector functions, we assessed
the metabolic profiles of primary human NK cells in the setting
of NK-cell education.

METHODS

Cell Lines
The MHC class I devoid cell lines 721.221 (33) and K-562
(34) were used as target cells to assess NK-cell function. Cells
were cultivated in complete medium (RPMI 1640 Medium,
Thermo Fisher Scientific, Waltham, MA, USA) supplemented
with 10% (v/v) heat-inactivated fetal bovine serum (FBS,
Biochrome, Berlin, Germany), 100 units/ml penicillin and 0.1
mg/ml streptomycin (Sigma-Aldrich, St. Louis, Missouri, USA).

Sample Acquisition and Processing
Peripheral blood samples were obtained from 45 randomly
selected healthy blood donors recruited at the Institute for
Transfusion Medicine, University medical center Hamburg-
Eppendorf, Hamburg, Germany. For this study, residual amounts
of anonymized peripheral blood samples were used which were
routinely taken from healthy blood donors and would have
been discarded otherwise. All blood donors gave their general
written consent to use their blood samples for scientific studies
in an anonymized form. The anonymized use of this material
complies with a vote by the ethics committee of the German
Medical Association. Furthermore, peripheral blood samples
were obtained from six additional healthy blood donors recruited
at the University medical center Hamburg-Eppendorf, Hamburg,
Germany. These donors provided written informed consent
and studies were approved by the ethical committee of the
Ärztekammer Hamburg. Peripheral blood mononuclear cells
(PBMCs) were isolated by density-gradient centrifugation within
2 h of sample collection, washed, and subsequently resuspended
in cell culture medium (RPMI 1640 Medium, Thermo Fisher
Scientific, Waltham, MA, USA) supplemented with 10% (v/v)
heat-inactivated FBS (Biochrome, Berlin, Germany).

Enrichment of NK Cells
Primary NK cells were enriched from PBMCs through an
immunomagnetic negative selection strategy (EasySep Human
NK cell Isolation Kit, Stemcell Technologies, Vancouver, Canada)
according to the manufacturer’s protocol. Purity of the enriched
cell populations was determined by flow cytometry using
fluorochrome-conjugated antibodies against CD3, CD14, CD16,
CD19, and CD56. Isolated NK cells were resuspended in
complete medium at a density of 3 × 106 cells/ml and cultured
overnight in the presence of 5 ng/ml recombinant human IL-15
(PeproTech GmbH, Hamburg, Germany) at 37◦C, 5% (v/v) CO2.
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Antibodies and Flow Cytometry
Multi-parameter flow cytometry was used for phenotypical and
functional characterization of NK cells as well as for cell sorting
of NK-cell subsets according to their expression of KIR2DL1,
KIR2DL2/L3, KIR3DL1, and NKG2A. Of note, the anti-
KIR2DL1 antibody that was used in this study has been shown
to recognize KIR2DS5 (35). In addition, the anti-KIR2DL2/L3
antibody can recognize KIR2DS2. The cross-reactivity of these
antibodies was considered negligible. Cells were acquired using
a BD LSRFortessa flow cytometer (BD Biosciences, Franklin
Lakes, NJ, USA). Flow cytometric sorting of NK-cell subsets
was performed using a BD FACSAria II SORP (BD Biosciences,
Franklin Lakes, NJ, USA). Boolean and logic gating were used to
determine NK-cell subsets that are either single positive for the
respective inhibitory receptors, co-express certain combinations
or lack the respective inhibitory receptors all together. The
data was further analyzed using FlowJo 10.4.2 software
(FlowJo, LLC, Ashland, OR, USA). A comprehensive list of all
antibodies and reagents is provided in Supplementary Table 1.
The corresponding gating strategy is displayed in
Supplementary Figure 1.

Assessment of NK-Cell Function
Levels of NK-cell activation were determined through expression
of CD107a on the surface of NK cells as previously described
(36). Enriched primary NK cells were cultured in the presence
or absence of the MHC class I devoid target cell lines 721.221
or K-562 at an effector:target ratio of 1:2 for a total of
4 h in the presence of anti-human CD107a. Monensin (BD
GolgiStop, BD Biosciences, Franklin Lakes, NJ, USA) was added
1 h after setup of the co-culture followed by additional 3 h of
incubation at 37◦C, 5% (v/v) CO2. Cells were then washed
with PBS and stained for viability, expression of CD3, CD14,
CD16, CD19, and CD56 as well as for the NK-cell receptors
KIR2DL1, KIR2DL2/L3, KIR3DL1, and NKG2A. Glut1.RBD-
GFP labeling was performed subsequently in RPMI 1640
medium supplemented with 10% (v/v) FBS, 0.09% (w/v) sodium
azide (NaN3), and 1mM EDTA for 30min at 37◦C. Cells
were further washed with PBS, fixed in PBS supplemented
with 2% (v/v) FBS, 0.09% (w/v) NaN3, 1mM EDTA and
1% (w/v) paraformaldehyde (PFA) then acquired on a BD
LSRFortessa flow cytometer. Educated NK-cell subsets were
initially determined through differences in CD107a frequency
using NK cells lacking the assessed inhibitory receptors as a
reference for uneducated NK cells. Subsequently, the education
status of NK-cell subsets was confirmed by HLA class I
genotyping shown in Supplementary Table 2.

The effect of metabolic inhibitors on NK-cell degranulation
was also tested. Prior to carrying out the degranulation (CD107a)
assay, enriched NK cells were incubated with either 2.5mM 2-
Deoxy-D-glucose (2-DG) (Sigma-Aldrich) in complete medium,
diluent control in complete medium, 2-DG in glucose free
medium or in glucose free media alone for 2 h at 37◦C, 5%
CO2. The degranulation assay was subsequently carried out in
the absence of 2-DG but matching the previous incubation with
either complete or glucose free medium.

Glucose Uptake Assay
The glucose uptake assay was performed as has been described
previously (37). Enriched primary NK cells were incubated in
glucose free medium (Thermo Fisher Scientific, Waltham, MA,
USA) supplemented with 50µM 2-NBDG (Biomol, Hamburg,
Germany) for 30min at 37◦C, 5% (v/v) CO2. Subsequently,
surface staining was carried out by incubating NK cells with
LIVE/DEADFixable Blue dye and antibodies against CD3, CD14,
CD16, CD19, and CD56 as well as for the NK cell receptors
KIR2DL1, KIR2DL2/L3, KIR3DL1, and NKG2A. Cells were
washed with PBS, fixed with 1% (v/v) PFA and then acquired on
a BD LSRFortessa flow cytometer.

Seahorse Assay
The Seahorse XFe96 Analyzer (Agilent Technologies, Santa
Clara, CA, USA) was used to measure the glycolytic function
of NK-cell subsets. Educated and uneducated NK cells were
FACS-sorted on a BD FACSAria II SORP flow cytometer
using enriched NK cells as primary material. Sorted NK cells
were cultivated overnight in complete cell culture medium
(RPMI 1640 Medium, Thermo Fisher Scientific, Waltham,
MA, USA) supplemented with 10% (v/v) heat-inactivated FBS
(Biochrome, Berlin, Germany) and 5 ng/ml recombinant human
IL-15 (PeproTech, Hamburg, Germany). The following day 2 ×

105 to 1 × 106 NK cells were resuspended in glucose-free assay
medium prior to the analysis and then into a 96-well Seahorse
XF cell culture microplate (Agilent Technologies, Santa Clara,
CA, USA) and incubated for 30min in a CO2-free incubator
at 37◦C. Sample replicates were used whenever sufficient cell
numbers were available (max. triplicates). Subsequently, oxygen
consumption rate (OCR) and extracellular acidification rate
(ECAR) were measured in a Glycolysis Stress Test (Agilent
Technologies, Santa Clara, CA, USA) using the manufacturer’s
protocol.

Statistical Analysis
GraphPad Prism 7.04 (GraphPad Software, La Jolla, CA, USA)
was used for statistical analyses and graphical display of the
data. For multiple comparisons, Friedman test with subsequent
Dunn’s multiple comparisons test was used. Wilcoxon matched-
pairs signed rank test with subsequent Bonferroni correction
was used for two groups with paired values. All p–values shown
are multiplicity adjusted. Adjusted p–values below 0.05 are
considered statistically significant.

Data Availability
Data storage is performed by the Heinrich Pette Institute on an
internal server. Data are available upon request and can be shared
after confirming that data will be used within the scope of the
originally provided informed consent.

RESULTS

Assessment of NK-Cell Function and
Glycolytic Profile
To investigate the glycolytic profiles of primary human NK cells
in the context of NK-cell education, the workflow presented
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FIGURE 1 | Experimental setup for the assessment of NK-cell function and glycolytic profile. Upper panel: Peripheral blood was processed through density gradient

centrifugation to isolate peripheral blood mononuclear cells (PBMCs). Subsequently, NK cells were enriched via immunomagnetic negative selection. Lower panel:

NK cells were analyzed via flow cytometry for expression of the inhibitory receptors KIR2DL1, KIR2DL2/L3, KIR3DL1, and NKG2A to identify NK cells positive for

self-inhibitory receptors (educated). NK-cell function was determined by the expression of CD107a after co-culture with the MHC class I devoid target cell lines K-562

and 721.221. Simultaneously, expression of the glucose transporter Glut1 was examined to assess the glycolytic profile. In addition, glucose uptake assays were

performed and the effect of the metabolic inhibitor 2-DG on NK-cell degranulation was investigated. Based on the expression of self-inhibitory receptors educated and

uneducated NK cells were sorted the same day and rested overnight. The following day, a Glycolysis Stress Test was performed to calculate the rates for glycolysis,

glycolytic capacity, and glycolytic reserve.

in Figure 1 was followed. First, function and education status
of enriched NK cells were determined by the expression of
CD107a after exposure to MHC class I deficient target cell
lines (721.221 and K-562 cells). Simultaneously, expression of

the glucose transporter Glut1 was determined. In addition, the
glycolytic profile of FACS-sorted educated and uneducated NK
cells was determined using the Seahorse XF Glycolysis Stress
Test.
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Educated NK Cells Exhibit Enhanced
Degranulation Capacity Compared to
Uneducated NK Cells
NK-cell function is tuned by the interaction between self-
inhibitory receptors and their cognate HLA class I ligands.
In order to assess NK-cell function in the context of host
HLA class I haplotypes, levels of NK-cell degranulation were
determined in the presence or absence of MHC class I devoid
target cell lines 721.221 and K-562 (Figure 2). The frequency
of CD107a+ cells was significantly increased on bulk NK
cells in the presence of 721.221 cells (p < 0.0001) or K-
562 cells (p < 0.0001) (Figure 2A). K-562 cells induced a
stronger NK-cell response than 721.221 cells (p = 0.0001).
After exposure to target cell lines, educated NK cells displayed
a significantly higher percentage of CD107a+ NK cells than
uneducated NK cells (p < 0.00001) (Figure 2B). Increased
response rates were observed for all tested subsets expressing
individual self-inhibitory receptors (Supplementary Figure 2).
Here, we confirmed that the expression of self-inhibitory
receptors was associated with increased functional competence
of NK cells, enabling us to distinguish educated and uneducated
NK-cell populations in the same donor for subsequent metabolic
assessments.

Educated NK Cells Show Differences in
Glut1 Expression
Expression of the glucose transporter Glut1 has been implicated
in influencing effector functions of lymphocytes (30, 38).
Therefore, expression levels of Glut1 in educated and uneducated
NK cells were tested with and without cellular stimulation using
MHC class I devoid cell lines (Figure 3). Bulk NK cells expressed
significantly higher surface levels of Glut1 in the presence of
721.221 cells (p = 0.005) or K-562 cells (p < 0.00001) than
NK cells in the absence of any target cell line (Figure 3A).
Glut1 expression levels were more pronounced on bulk NK cells
exposed to K-562 cells compared to NK cells co-cultured with
721.221 cells (p= 0.005) (Figure 3A, right panel). This is possibly
due to the increased activation as demonstrated by higher
CD107a expression in response to K-562 cells (Figure 2A).
Indeed, when exposed to the respective target cell lines, CD107a+

NK cells exhibited higher expression of Glut1 on their cell
surface than CD107a− NK cells (p < 0.00001) (Figure 3B).
Stratification of bulk NK cells into educated and uneducated cells
revealed that educated NK cells express higher levels of Glut1
than uneducated NK cells after exposure to both tested target
cell lines (721.221 cells: p < 0.001 and K-562 cells: p < 0.0001)
(Figure 3C, left panel). Nevertheless, cellular stimulation of NK
cells resulted in an upregulation of Glut1 in both educated and
uneducated NK cell subsets (educated: 721.221 cells p < 0.05
and K-562 cells p < 0.0001, uneducated: 721.221 cells p =

0.02 and K-562 cells p < 0.0001, Supplementary Figure 3A).
Of note, elevated surface expression levels of Glut1 were also
observed in educated NK cells without activation (p < 0.0001)
(Figure 3C, left panel). Further stratification of educated NK
cells into KIR+ and NKG2A+ NK cells revealed significant
differences in the expression of Glut1 between the two subsets

FIGURE 2 | Education of primary NK cells. Flow cytometric assessment of

NK-cell function after exposure to various target cells. Enriched primary NK

cells from healthy donors (n = 45) were cultured either in the absence (gray) or

presence of 721.221 cells (cyan) or K-562 cells (purple). (A) Proportion of

CD107a+ bulk NK cells. Statistical analysis: Friedman test, Dunn’s multiple

comparisons test. Black bars represent the median. (B) Upper panel:

Representative histogram of CD107a expression of educated and uneducated

NK cells after stimulation with target cells. Numbers indicate the percentage of

CD107a+ cells after exposure to target cells. Lower panel: Comparison of

CD107a expression frequency between educated and uneducated NK cells.

Statistical analysis: Wilcoxon matched-pairs signed-rank test with subsequent

Bonferroni correction. Black bars represent the median.
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(Figure 3C, right panel, Supplementary Figure 3B). At basal
levels as well as after exposure to target cells educated KIR+ NK
cells showed significantly higher expression of Glut1 compared
to their NKG2A+ counterparts (p < 0.00001 each). Moreover,
Glut1 expression levels did not differ between NKG2A+ NK
cells and uneducated NK cells. To assess the general ability to
absorb glucose irrespective of Glut1, a 2-NBDG uptake assay was
performed (Figure 3D). As withGlut1, educatedNK cells showed
increased uptake of 2-NBDG compared to uneducated NK cells
(p = 0.03, left panel), however, the ability to take up glucose
was even further enhanced in NKG2A+ cells when compared to
KIR-educated cells (p = 0.03, right panel). Finally, the potential
effects of glycolysis blockade and glucose starvation on NK-cell
cytotoxicity were investigated (Figure 3E). Treatment with the
glycolysis inhibitor 2-DG alone had no effect on the ability of
NK cells to degranulate after exposure to K-562 cells. In contrast,
incubation with glucose-free media affected the frequency of
CD107a+ NK cells in the uneducated subset and was even further
pronounced in combination with 2-DG (p = 0.06, left panel).
While the educated subset as a whole seemed to be unaffected
by the culture conditions, stratification into KIR-educated and
NKG2A-educated NK cells showed significant differences in the
CD107a expression frequency. Glucose-free culture conditions
had no effect on the percentage of CD107a+ NKG2A+ NK
cells, whereas KIR-educated were impacted similarly compared
to uneducated NK cells (p= 0.06, right panel).

Taken together, KIR-educated NK cells exhibited overall
higher surface levels of Glut1 in comparison to NKG2A-educated
and uneducated NK cells, which was observed after stimulation
with target cell lines and of particular note in the absence of
stimulation. In contrast, NKG2A+ NK cells showed an increased
ability to take up 2-NBDG compared to KIR-educated and
uneducated NK cells. Both of the latter subsets were also more
susceptible to the lack of glucose in terms of their cytotoxic
function compared to NKG2A+ NK cells.

Educated and Uneducated NK Cells
Display Different Glycolytic Profiles
Glycolytic metabolism is a key factor impacting lymphocyte
function. To determine potential differences in the metabolic
profile of educated and uneducated NK cells a Seahorse
XF Glycolysis Stress Test was performed (Figure 4). The
Seahorse XF Glycolysis Stress Test measures the glycolytic
function of cells and provides information about several
parameters of the glycolytic flux, including glycolysis, glycolytic
capacity and glycolytic reserve. FACS-sorted educated and
uneducated NK cells were tested using the Glycolysis Stress
Test (Figure 4A). The Seahorse XF analyzer performs sequential
measurements of the extracellular acidification rate (ECAR) and
oxygen consumption rate (OCR) after the addition of glucose
(fueling glycolysis), oligomycin [ATP synthase inhibitor blocking
oxidative phosphorylation (OXPHOS)] and 2-DG (synthetic
glucose analog inhibiting glycolysis). Our data showed that
educated NK cells exhibited significantly higher ECAR values
compared to uneducated NK cells (p = 0.002) (Figure 4B).
When OXPHOS was interrupted, educated, and uneducated NK
cells showed no differences in glycolytic capacity (p = 0.08). In
addition, the glycolytic reserve did not differ between educated

and uneducated NK cells (p = 0.5). Of note, no differences in
the oxygen consumption rate between educated and uneducated
NK cells were observed throughout the assay (data not
shown) including basal respiration after the addition of glucose
(Figure 4C, p = 0.6). Taken together, the results show that
when OXPHOS is interrupted, educated and uneducated NK-cell
subsets exhibited similar glycolytic capacity and reserve, whereas
educated NK cells were able to utilize glucose significantly better
(increased glycolysis) than uneducated NK cells.

DISCUSSION

Themolecular mechanisms underlying the functional superiority
of educated NK cells remain insufficiently understood. New
insights from the field of immunometabolism show that immune
cells can undergo metabolic reprogramming upon transition
from a quiescent to an activated state (27). To assess whether
metabolic reprogramming may be associated with the differences
seen in the responsiveness of educated and uneducated NK
cells we performed metabolic analyses of these distinct NK-
cell populations. Educated NK cells showed higher expression
of the glucose transporter Glut1 than uneducated NK cells
on their cell surface. Interestingly, a difference was also seen
within the educated NK-cell pool when comparing NK cells
educated via NKG2A or KIRs. Metabolic analysis using Seahorse
showed that educated NK cells exhibit a significantly increased
rate of glycolysis compared to uneducated but no difference
was seen in oxidative phosphorylation. Blockade of glycolysis
with 2-DG in the absence of glucose partially reduced the
functional output of both uneducated and KIR-educated NK
cells but surprisingly not of NKG2A-educated NK cells. Taken
together, our results indicate that educated and uneducated NK
cells exhibit differences in their glycolytic metabolism and these
differences may explain the large functional discrepancy between
the two populations.

Immune cell activation is associated with an upregulation
of nutrient transporters on the cell surface in order to ensure
the utilization of available nutrients for the cellular energy
production and assembly of biomolecules (39). Previously it has
been shown that CD3/CD28T cell receptor stimulation leads to
an upregulation of the glucose transporter Glut1 on the surface of
human T cells, which enables these cells to comply with increased
energy demands (40, 41). In this study we demonstrated that
educated NK cells have increased surface expression of Glut1
compared to uneducated NK cells with or without activation by
target cell lines. It has previously been demonstrated that the
functional and phenotypically divergent subsets of CD56bright

and CD56dim NK cells exhibit different expression patterns of
Glut1 in humans (38). CD56bright NK cells are found to be more
metabolically active and express higher Glut1 levels in a resting
state compared to CD56dim NK cells which express low Glut1
levels (38). This is a similar pattern to that seen in educated
compared to uneducated NK cells suggesting that Glut1 may be
upregulated due to increased demand for glucose by NK cells as
is seen in T lymphocytes (30, 41, 42).

Although Glut1 expression was increased in educated
compared to uneducated NK cells, Glut1 expression did go
up in both populations following stimulation with target cells.

Frontiers in Immunology | www.frontiersin.org 6 December 2018 | Volume 9 | Article 3020

https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org
https://www.frontiersin.org/journals/immunology#articles


Pfeifer et al. NK Cell Metabolism

FIGURE 3 | KIR-educated NK cells express higher levels of Glut1. (A–C) Flow cytometric assessment of the glucose transporter Glut1 expression on NK cells with and

without exposure to various target cells. Enriched primary NK cells from healthy donors (n = 29) were cultured for 4 h either in absence (gray) or presence of 721.221

cells (cyan) or K-562 cells (purple). (A) Left panel: Representative histogram of Glut1 expression of bulk NK cells. Right panel: Relative fluorescence intensity (RFI) of

Glut1 on bulk NK cells. Statistical analysis: Friedman test, Dunn’s multiple comparisons test. Black bars represent the median. (B) Comparison of Glut1 expression

(RFI) between CD107a+ and CD107a− NK cells in presence of 721.221 cells (cyan) or K-562 cells (purple). Statistical analysis: Wilcoxon matched-pairs signed-rank

(Continued)
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FIGURE 3 | test with subsequent Bonferroni correction. Black bars represent the median. (C) Comparison of Glut1 expression (RFI) between educated and

uneducated NK cells (left panel) and between KIR- and NKG2A-educated NK cells (right panel). Statistical analysis: Wilcoxon matched pairs signed rank test with

subsequent Bonferroni correction. Black bars represent the median. Dashed lines indicate the median of 2-NBDG fluorescence (RFI) of uneducated NK cells. (D) Flow

cytometric assessment of glucose uptake by enriched primary NK cells using 2-NBDG (n = 6). Comparison of Glucose uptake between educated and uneducated

NK cells (left panel) and between KIR- and NKG2A-educated NK cells (right panel). Statistical analysis: Wilcoxon matched pairs signed rank test. Black bars represent

the median. Dashed lines indicate the median of 2-NBDG fluorescence (RFI) of uneducated NK cells. (E) Impact of metabolic inhibitors on NK cell degranulation.

Enriched primary NK cells from healthy donors (n = 6) were pretreated with either 2-DG (2DG), glucose-free media (GfM), both or left in complete medium before

cultured for 4 h either in absence or presence of K-562 cells. Scatter plots shows the relative change of CD107a+ cells in the treated samples compared to the

medium control. Plots compare educated with uneducated NK cells (left panel) and KIR-educated with NKG2A-educated NK cells (right panel). Statistical analysis:

Wilcoxon matched-pairs signed-rank test with subsequent Bonferroni correction. Boxes and whiskers indicate the median, 25/75% percentile and the

minimum/maximum. Dashed line indicates 100%.

FIGURE 4 | Educated and uneducated NK cells display different glycolytic profiles. The glycolytic profile of FACS-sorted educated and uneducated NK cells was

determined in a Glycolysis Stress Test using the Seahorse XF extracellular flux analyzer (n = 18). (A) Representative ECAR (left panel) and OCR data right panel of

educated and uneducated NK cells measured in a Glycolysis Stress Test from a single donor. (B) Comparison of glycolysis (left panel), glycolytic capacity (middle

panel) and glycolytic reserve (right panel) between educated and uneducated NK cells calculated from ECAR data (n = 18). Statistical analysis: Wilcoxon matched

pairs signed rank test with subsequent Bonferroni correction. Black bars represent the median. (C) Comparison of the basal respiration between educated and

uneducated NK cells derived from OCR data (n = 18). Statistical analysis: Wilcoxon matched-pairs signed-rank test. Black bars represent the median.

This observation is in line with previous studies describing
increased Glut1 expression on the cell surface of CD56dim NK
cells following cytokine stimulation (38). Overall, these data
suggest that Glut1 upregulation may allow NK cells activated by
cytokines or target cells to take up increased amounts of glucose
from the surrounding medium to fuel cellular glycolysis and
meet the increased energy demand for effector functions, such
as cytokine production, degranulation or proliferation. Indeed,
educated NK cells took up more of the glucose analog 2-NBDG
compared to uneducated. Interestingly, uptake was increased
in NKG2A educated NK cells compared to KIR educated cells
despite Glut1 expression being higher in the KIR subset. This
suggests that other transporters may also be important for

glucose uptake in this population such as Glut3 and Glut4
that have also been found to be expressed on NK cells (43).
Interestingly, Glut3 and Glut4 expression have also been seen in
mouse and human CD4+ T cells in both a naïve and activated
state with a suggested role in glucose uptake following activation
(30, 44). Thus, higher Glut1 surface expression and perhaps
expression of other glucose receptors may provide an advantage
for educated NK cells that contributes to the superior effector
function of educated NK cells over uneducated NK cells.

Activated immune cells are characterized by an increased
uptake of glucose and elevated levels of glycolysis (27). We
demonstrated that educated NK cells have increased glycolytic
activity compared to uneducated NK cells using a Seahorse
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XF Glycolysis Stress Test and this is supported by similar
work performed by Schafer et al. (45). It is possible that the
increased expression of glucose transporter seen on educated
NK cells is associated with a metabolic shift toward glycolysis.
The increase in glycolysis matches data from T cells where
utilization of glucose through aerobic glycolysis aids activated T
cells in meeting their metabolic demands to fulfill their effector
functions (46). Recent research has demonstrated that NK cells
exhibit similar metabolic changes upon activation with cytokines
demonstrating the importance of glycolysis for NK-cell effector
function (32). In our work, enriched NK cells were rested
with low-dose IL-15 overnight prior to analysis. We found that
comparison of Glut1 expression and 2-NBDG uptake directly
ex vivo was similar to that seen following overnight rest (data
not shown) although we cannot eliminate the possibility that
low-dose IL-15 enhances these differences.

Schafer et al. saw no difference in oxidative phosphorylation
between educated and uneducated NK cell populations using
Seahorse, matching our result (45). Although glucose fueled
oxidative phosphorylation has been shown to play an important
role in cytokine stimulated NK-cell function it is possible that this
does not contribute to the differences seen in educated compared
to uneducated NK cells (47). Amino acids and their transporters
are also involved in the metabolic regulation of NK cells with
Loftus et al. recently showing that glutamine transport controls
cMyc expression and subsequently glycolysis in mouse NK cells
(48). The mammalian target of rapamycin complex 1 has also
been shown to be crucial in this process but may be activated
through differing pathways depending on stimulus (32, 48, 49).
Further work is required to find whether amino acids play a
role in the functional differences seen between educated and
uneducated NK cells and what role different signaling pathways
play in this.

NK cells can be activated through different stimulatory
signals, which leads to the activation of multiple signaling
pathways. In this work we investigated the metabolic response
of resting NK cells or those activated with K562 or 721.221
cell lines. It may be that in NK cells differing stimuli give rise
to differing metabolic responses. Indeed, in human NK cells
distinct cytokine combinations can lead to different metabolic
changes (38). Cytokine stimulation in mouse NK cells has been
shown to induce increased glucose uptake and glycolytic rates
(32). Interestingly, inhibition of either glycolysis or OXPHOS can
impair NK cell effector functions following cytokine stimulation
(32, 38). In this work we found that blockade of glycolysis
with 2-DG in the absence of glucose partially inhibited NK
cell degranulation in uneducated NK cells but not in educated
cells. Schafer et al. recently showed that combinatorial blockade
of glycolysis and oxidative phosphorylation was required to
effectively inhibit the cytotoxicity of educated NK cells while
blockade of glycolysis with 2-DG alone was insufficient (45).
Interestingly, when deconvoluting educated NK cells into KIR
educated and NKG2A-educated populations we saw partial
inhibition in the KIR+ population but not in the NKG2A+

population suggesting variable metabolic behavior even within
the educated NK-cell pool.

The resistance of educated NK cell function to blockade of
glycolysis suggests a role for these cells in disease settings with
low availability of glucose such as cancer (50–52). In our work
we found that NKG2A-educated NK cells were more resistant
to blockade of glycolysis than their KIR-educated counterparts
suggesting they may be ideally suited to function with low
glucose availability. Interestingly, low glucose levels and hypoxic
conditions have been shown to induce upregulation of the
NKG2A ligand HLA-E on tumor cell lines but also in primary
tissues (53, 54). This may confer a necessary survival advantage
against NKG2A+ NK cells and assist in immune escape.

We have shown that the phenotypically and functionally
different educated and uneducated NK-cell subsets can be
further distinguished by their metabolic profile regarding
glucose metabolism. Further studies are now required to
elucidate the molecular pathways that link engagement of
self-inhibitory receptors with subsequent changes in cellular
metabolism in educated NK cells. Taken together, the present
study demonstrates that educated NK cells reside in a distinct
glycolytic state that may serve as an underlying mechanism for
the increased functional potential of NK cells expressing self-
inhibitory receptors.
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