318 research outputs found

    Reappraisal of the Constitutionality of Miscegenation Statutes

    Get PDF

    Reappraisal of the Constitutionality of Miscegenation Statutes

    Get PDF

    Characterizing the role of brain derived neurotrophic factor genetic variation in Alzheimerā€™s Disease neurodegeneration

    Get PDF
    There is accumulating evidence that neurotrophins, like brain-derived neurotrophic factor (BDNF), may impact aging and Alzheimer's Disease. However, traditional genetic association studies have not found a clear relationship between BDNF and AD. Our goal was to test whether BDNF single nucleotide polymorphisms (SNPs) impact Alzheimer's Disease-related brain imaging and cognitive markers of disease. We completed an imaging genetics study on 645 Alzheimer's Disease Neuroimaging Initiative participants (ND=175, MCI=316, AD=154) who had cognitive, brain imaging, and genetics data at baseline and a subset of those with brain imaging data at two years. Samples were genotyped using the Illumina Human610-Quad BeadChip. 13 SNPs in BDNF were identified in the dataset following quality control measures (rs6265(Val66Met), rs12273363, rs11030094, rs925946, rs1050187, rs2203877, rs11030104, rs11030108, rs10835211, rs7934165, rs908867, rs1491850, rs1157459). We analyzed a subgroup of 8 SNPs that were in low linkage disequilibrium with each other. Automated brain morphometric measures were available through ADNI investigators, and we analyzed baseline cognitive scores, hippocampal and whole brain volumes, and rates of hippocampal and whole brain atrophy and rates of change in the ADAS-Cog over one and two years. Three out of eight BDNF SNPs analyzed were significantly associated with measures of cognitive decline (rs1157659, rs11030094, rs11030108). No SNPs were significantly associated with baseline brain volume measures, however six SNPs were significantly associated with hippocampal and/or whole brain atrophy over two years (rs908867, rs11030094, rs6265, rs10501087, rs1157659, rs1491850). We also found an interaction between the BDNF Val66Met SNP and age with whole brain volume. Our imaging-genetics analysis in a large dataset suggests that while BDNF genetic variation is not specifically associated with a diagnosis of AD, it appears to play a role in AD-related brain neurodegeneration

    Recurrent Chromosomal Copy Number Alterations in Sporadic Chordomas

    Get PDF
    The molecular events in chordoma pathogenesis have not been fully delineated, particularly with respect to copy number changes. Understanding copy number alterations in chordoma may reveal critical disease mechanisms that could be exploited for tumor classification and therapy. We report the copy number analysis of 21 sporadic chordomas using array comparative genomic hybridization (CGH). Recurrent copy changes were further evaluated with immunohistochemistry, methylation specific PCR, and quantitative real-time PCR. Similar to previous findings, large copy number losses, involving chromosomes 1p, 3, 4, 9, 10, 13, 14, and 18, were more common than copy number gains. Loss of CDKN2A with or without loss of CDKN2B on 9p21.3 was observed in 16/20 (80%) unique cases of which six (30%) showed homozygous deletions ranging from 76 kilobases to 4.7 megabases. One copy loss of the 10q23.31 region which encodes PTEN was found in 16/20 (80%) cases. Loss of CDKN2A and PTEN expression in the majority of cases was not attributed to promoter methylation. Our sporadic chordoma cases did not show hotspot point mutations in some common cancer gene targets. Moreover, most of these sporadic tumors are not associated with T (brachyury) duplication or amplification. Deficiency of CDKN2A and PTEN expression, although shared across many other different types of tumors, likely represents a key aspect of chordoma pathogenesis. Sporadic chordomas may rely on mechanisms other than copy number gain if they indeed exploit T/ brachyury for proliferation

    Impact of Cigarette Smoke Exposure on Innate Immunity: A Caenorhabditis elegans Model

    Get PDF
    BACKGROUND: Cigarette smoking is the major cause of chronic obstructive pulmonary disease (COPD) and lung cancer. Respiratory bacterial infections have been shown to be involved in the development of COPD along with impaired airway innate immunity. METHODOLOGY/PRINCIPAL FINDINGS: To address the in vivo impact of cigarette smoke (CS) exclusively on host innate defense mechanisms, we took advantage of Caenorhabditis elegans (C. elegans), which has an innate immune system but lacks adaptive immune function. Pseudomonas aeruginosa (PA) clearance from intestines of C. elegans was dampened by CS. Microarray analysis identified 6 candidate genes with a 2-fold or greater reduction after CS exposure, that have a human orthologue, and that may participate in innate immunity. To confirm a role of CS-down-regulated genes in the innate immune response to PA, RNA interference (RNAi) by feeding was carried out in C. elegans to inhibit the gene of interest, followed by PA infection to determine if the gene affected innate immunity. Inhibition of lbp-7, which encodes a lipid binding protein, resulted in increased levels of intestinal PA. Primary human bronchial epithelial cells were shown to express mRNA of human Fatty Acid Binding Protein 5 (FABP-5), the human orthologue of lpb-7. Interestingly, FABP-5 mRNA levels from human smokers with COPD were significantly lower (p = 0.036) than those from smokers without COPD. Furthermore, FABP-5 mRNA levels were up-regulated (7-fold) after bacterial (i.e., Mycoplasma pneumoniae) infection in primary human bronchial epithelial cell culture (air-liquid interface culture). CONCLUSIONS: Our results suggest that the C. elegans model offers a novel in vivo approach to specifically study innate immune deficiencies resulting from exposure to cigarette smoke, and that results from the nematode may provide insight into human airway epithelial cell biology and cigarette smoke exposure

    Environmental Predictors of Seasonal Influenza Epidemics across Temperate and Tropical Climates

    Get PDF
    Human influenza infections exhibit a strong seasonal cycle in temperate regions. Recent laboratory and epidemiological evidence suggests that low specific humidity conditions facilitate the airborne survival and transmission of the influenza virus in temperate regions, resulting in annual winter epidemics. However, this relationship is unlikely to account for the epidemiology of influenza in tropical and subtropical regions where epidemics often occur during the rainy season or transmit year-round without a well-defined season. We assessed the role of specific humidity and other local climatic variables on influenza virus seasonality by modeling epidemiological and climatic information from 78 study sites sampled globally. We substantiated that there are two types of environmental conditions associated with seasonal influenza epidemics: ā€œcold-dryā€ and ā€œhumid-rainyā€. For sites where monthly average specific humidity or temperature decreases below thresholds of approximately 11ā€“12 g/kg and 18ā€“21Ā°C during the year, influenza activity peaks during the cold-dry season (i.e., winter) when specific humidity and temperature are at minimal levels. For sites where specific humidity and temperature do not decrease below these thresholds, seasonal influenza activity is more likely to peak in months when average precipitation totals are maximal and greater than 150 mm per month. These findings provide a simple climate-based model rooted in empirical data that accounts for the diversity of seasonal influenza patterns observed across temperate, subtropical and tropical climates

    Human oral viruses are personal, persistent and gender-consistent.

    Get PDF
    Viruses are the most abundant members of the human oral microbiome, yet relatively little is known about their biodiversity in humans. To improve our understanding of the DNA viruses that inhabit the human oral cavity, we examined saliva from a cohort of eight unrelated subjects over a 60-day period. Each subject was examined at 11 time points to characterize longitudinal differences in human oral viruses. Our primary goals were to determine whether oral viruses were specific to individuals and whether viral genotypes persisted over time. We found a subset of homologous viral genotypes across all subjects and time points studied, suggesting that certain genotypes may be ubiquitous among healthy human subjects. We also found significant associations between viral genotypes and individual subjects, indicating that viruses are a highly personalized feature of the healthy human oral microbiome. Many of these oral viruses were not transient members of the oral ecosystem, as demonstrated by the persistence of certain viruses throughout the entire 60-day study period. As has previously been demonstrated for bacteria and fungi, membership in the oral viral community was significantly associated with the sex of each subject. Similar characteristics of personalized, sex-specific microflora could not be identified for oral bacterial communities based on 16S rRNA. Our findings that many viruses are stable and individual-specific members of the oral ecosystem suggest that viruses have an important role in the human oral ecosystem

    Reduced prefrontal gyrification in obsessiveā€“compulsive disorder

    Get PDF
    Structural magnetic resonance imaging (MRI) studies reveal evidence for brain abnormalities in obsessiveā€“compulsive disorder (OCD), for instance, reduction of gray matter volume in the prefrontal cortex. Disturbances of gyrification in the prefrontal cortex have been described several times in schizophrenia pointing to a neurodevelopmental etiology, while gyrification has not been studied so far in OCD patients. In 26 OCD patients and 38 healthy control subjects MR-imaging was performed. Prefrontal cortical folding (gyrification) was measured bilaterally by an automated version of the automated-gyrification index (A-GI), a ratio reflecting the extent of folding, from the slice containing the inner genu of the corpus callosum up to the frontal pole. Analysis of covariance (ANCOVA, independent factor diagnosis, covariates age, duration of education) demonstrated that compared with control subjects, patients with OCD displayed a significantly reduced A-GI in the left hemisphere (pĀ =Ā 0.021) and a trend for a decreased A-GI in the right hemisphere (pĀ =Ā 0.076). Significant correlations between prefrontal lobe volume and A-GI were only observed in controls, but not in OCD patients. In conclusion, prefrontal hypogyrification in OCD patients may be a structural correlate of the impairment in executive function of this patient group and may point to a neurodevelopmental origin of this disease
    • ā€¦
    corecore