243 research outputs found

    Development of the Astyanax mexicanus circadian clock and non-visual light responses

    Get PDF
    Most animals and plants live on the planet exposed to periods of rhythmic light and dark. As such, they have evolved endogenous circadian clocks to regulate their physiology rhythmically, and non-visual light detection mechanisms to set the clock to the environmental light-dark cycle. In the case of fish, circadian pacemakers are not only present in the majority of tissues and cells, but these tissues are themselves directly light-sensitive, expressing a wide range of opsin photopigments. This broad non-visual light sensitivity exists to set the clock, but also impacts a wide range of fundamental cell biological processes, such as DNA repair regulation. In this context, Astyanax mexicanus is a very intriguing model system with which to explore non-visual light detection and circadian clock function. Previous work has shown that surface fish possess the same directly light entrainable circadian clocks, described above. The same is true for cave strains of Astyanax in the laboratory, though no daily rhythms have been observed under natural dark conditions in Mexico. There are, however, clear alterations in the cave strain light response and changes to the circadian clock, with a difference in phase of peak gene expression and a reduction in amplitude. In this study, we expand these early observations by exploring the development of non-visual light sensitivity and clock function between surface and cave populations. When does the circadian pacemaker begin to oscillate during development, and are there differences between the various strains? Is the difference in acute light sensitivity, seen in adults, apparent from the earliest stages of development? Our results show that both cave and surface populations must experience daily light exposure to establish a larval gene expression rhythm. These oscillations begin early, around the third day of development in all strains, but gene expression rhythms show a significantly higher amplitude in surface fish larvae. In addition, the light induction of clock genes is developmentally delayed in cave populations. Zebrafish embryonic light sensitivity has been shown to be critical not only for clock entrainment, but also for transcriptional activation of DNA repair processes. Similar downstream transcriptional responses to light also occur in Astyanax. Interestingly, the establishment of the adult timing profile of clock gene expression takes several days to become apparent. This fact may provide mechanistic insight into the key differences between the cave and surface fish clock mechanisms

    Recent developments in X-ray diffraction/scattering computed tomography for materials science

    Get PDF
    X-ray diffraction/scattering computed tomography (XDS-CT) methods are a non-destructive class of chemical imaging techniques that have the capacity to provide reconstructions of sample cross-sections with spatially resolved chemical information. While X-ray diffraction CT (XRD-CT) is the most well-established method, recent advances in instrumentation and data reconstruction have seen greater use of related techniques like small angle X-ray scattering CT and pair distribution function CT. Additionally, the adoption of machine learning techniques for tomographic reconstruction and data analysis are fundamentally disrupting how XDS-CT data is processed. The following narrative review highlights recent developments and applications of XDS-CT with a focus on studies in the last five years. This article is part of the theme issue 'Exploring the length scales, timescales and chemistry of challenging materials (Part 2)'

    Determination of the nature of the Cu coordination complexes formed in the presence of NO and NH3 within SSZ-13

    Get PDF
    Ammonia-selective catalytic reduction (NH3-SCR) using Cu zeolites is a well-established strategy for the abatement of NOx gases. Recent studies have demonstrated that Cu is particularly active when exchanged into the SSZ-13 zeolite, and its location in either the 6r or 8r renders it an excellent model system for fundamental studies. In this work, we examine the interaction of NH3-SCR relevant gases (NO and NH3) with the Cu2+ centers within the SSZ-13 structure, coupling powder diffraction (PD), X-ray absorption spectroscopy (XAFS), and density functional theory (DFT). This combined approach revealed that, upon calcination, cooling and gas exposure Cu ions tend to locate in the 8r window. After NO introduction, Cu-ions are seen to coordinate to two framework oxygens and one NO molecule, resulting in a bent Cu-nitrosyl complex with a Cu-N-O bond angle of similar to 150 degrees. Whilst Cu seems to be partially reduced/changed in coordination state, NO is partially oxidized. On exposure to NH3 while the PD data suggest the Cu2+ ion occupies a similar position, simulation and XAFS pointed toward the formation of a Jahn-Teller distorted hexaamine complex [Cu(NH3)(6)](2+) in the center of the cha cage. These results have important implications in terms of uptake and storage of these reactive gases and potentially for the mechanisms involved in the NH3-SCR process

    Council tax valuation bands, socio-economic status and health outcome: a cross-sectional analysis from the Caerphilly Health and Social Needs Study

    Get PDF
    Council tax valuation bands (CTVBs) are a categorisation of household property value in Great Britain. The aim of the study was to assess the CTVB as a measure of socio-economic status by comparing the strength of the associations between selected health and lifestyle outcomes and CTVBs with two measures of socio-economic status: the National Statistics Socio-Economic Classification (NS-SEC) and the 2001 UK census-based Townsend deprivation index. METHODS: Cross-sectional analysis of data on 12,092 respondents (adjusted response 62.7%) to the Caerphilly Health and Social Needs Study, a postal questionnaire survey undertaken in Caerphilly county borough, south-east Wales, UK. The CTVB was assigned to each individual by matching the sampling frame to the local authority council tax register. Crude and age-gender adjusted odds ratios for each category of CTVB, NS-SEC and fifth of the ward distribution of Townsend scores were estimated for smoking, poor diet, obesity, and limiting long-term illness using logistic regression. Mean mental (MCS) and physical (PCS) component summary scores of the Short-Form SF-36 health status questionnaire were estimated in general linear models. RESULTS: There were significant trends in odds ratios across the CTVB categories for all outcomes, most marked for smoking and mental and physical health status. The adjusted odds ratio for being a smoker in the lowest versus highest CTVB category was 3.80 (95% CI: 3.06, 4.71), compared to 3.00 (95% CI: 2.30, 3.90) for the NS-SEC 'never worked and long-term unemployed' versus 'higher managerial and professional' categories, and 1.61 (95% CI: 1.42, 1.83) for the most deprived versus the least deprived Townsend fifth. The difference in adjusted mean MCS scores was 5.9 points on the scale for CTVB, 9.2 for NS-SEC and 3.2 for the Townsend score. The values for the adjusted mean PCS scores were 6.3 points for CTVB, 11.3 for NS-SEC, and 2.5 for the Townsend score. CONCLUSION: CTVBs assigned to individuals were strongly associated with the health and lifestyle outcomes modelled in this study. CTVBs are readily available for all residential properties and deserve further consideration as a proxy for socio-economic status in epidemiological studies in Great Britain

    Warmer Ambient Temperatures Depress Detoxification and Food Intake by Marsupial Folivores

    Get PDF
    Ambient temperature is an underappreciated determinant of foraging behaviour in wild endotherms, and the requirement to thermoregulate likely influences food intake through multiple interacting mechanisms. We investigated relationships between ambient temperature and hepatic detoxification capacity in two herbivorous marsupials, the common ringtail possum (Pseudocheirus peregrinus) and common brushtail possum (Trichosurus vulpecula) that regularly feed on diets rich in plant toxins. As an indicator of hepatic detoxification capacity, we determined the functional clearance rate of an anaesthetic agent, Alfaxalone, after possums were acclimated to 10°C [below the thermoneutral zone (TNZ)], 18°C [approximately lower critical temperature (LCT)], and 26°C [approximately upper critical temperature (UCT)] for either 7 days or less than 24 h. We then measured intake of foods with high or low plant secondary metabolite (PSM) concentrations under the same temperature regimes. After 7 days of acclimation, we found a positive correlation between the functional clearance rate of Alfaxalone and ambient temperature, and a negative relationship between ambient temperature and intake of foods with high or low PSM concentrations for both species. The effect of ambient temperature on intake of diets rich in PSMs was absent or reduced when possums were kept at temperatures for less than 24 h. Our results underscore the effects of ambient temperature in hepatic metabolism particularly with respect intake of diets containing PSMs. Given that the planet is warming, it is vital that effects of ambient temperature on metabolism, nutrition and foraging by mammalian herbivores is taken into account to predict range changes of species and their impact on ecosystems

    Compassionate use of cefiderocol as adjunctive treatment of native aortic valve endocarditis due to XDR-Pseudomonas aeruginosa

    Get PDF
    Serious infections such as endocarditis due to extremely drug-resistance gram-negative bacteria are an increasing challenge. Here, we present successful adjunctive use of cefiderocol for a patient with persistently bacteremic healthcare-associated native aortic valve endocarditis due to an extended-spectrum beta-lactamase-positive Pseudomonas aeruginosa susceptible in vitro only to colistin, following failure of conventional therapeutic options

    Highly selective CO₂ photoreduction to CO on MOF-derived TiO₂

    Get PDF
    Metal–Organic Framework (MOF)-derived TiO2, synthesised through the calcination of MIL-125-NH2, is investigated for its potential as a CO2 photoreduction catalyst. The effect of the reaction parameters: irradiance, temperature and partial pressure of water was investigated. Using a two-level design of experiments, we were able to evaluate the influence of each parameter and their potential interactions on the reaction products, specifically the production of CO and CH4. It was found that, for the explored range, the only statistically significant parameter is temperature, with an increase in temperature being correlated to enhanced production of both CO and CH4. Over the range of experimental settings explored, the MOF-derived TiO2 displays high selectivity towards CO (98%), with only a small amount of CH4 (2%) being produced. This is notable when compared to other state-of-the-art TiO2 based CO2 photoreduction catalysts, which often showcase lower selectivity. The MOF-derived TiO2 was found to have a peak production rate of 8.9 × 10−4 μmol cm−2 h−1 (2.6 μmol g−1 h−1) and 2.6 × 10−5 μmol cm−2 h−1 (0.10 μmol g−1 h−1) for CO and CH4, respectively. A comparison is made to commercial TiO2, P25 (Degussa), which was shown to have a similar activity towards CO production, 3.4 × 10−3 μmol cm−2 h−1 (5.9 μmol g−1 h−1), but a lower selectivity preference for CO (3 : 1 CH4 : CO) than the MOF-derived TiO2 material developed here. This paper showcases the potential for MIL-125-NH2 derived TiO2 to be further developed as a highly selective CO2 photoreduction catalyst for CO production

    Efficient low-loaded ternary Pd-In2O3-Al2O3 catalysts for methanol production

    Get PDF
    Pd-In2O3 catalysts are among the most promising alternatives to Cu-ZnO-Al2O3 for synthesis of CH3OH from CO2. However, the intrinsic activity and stability of In2O3 per unit mass should be increased to reduce the content of this scarcely available element and to enhance the catalyst lifetime. Herein, we propose and demonstrate a strategy for obtaining highly dispersed Pd and In2O3 nanoparticles onto an Al2O3 matrix by a one-step coprecipitation followed by calcination and activation. The activity of this catalyst is comparable with that of a Pd-In2O3 catalyst (0.52 vs 0.55 gMeOH h−1 gcat-1 at 300 \ub0C, 30 bar, 40,800 mL h−1 gcat-1) but the In2O3 loading decreases from 98 to 12 wt% while improving the long-term stability by threefold at 30 bar. In the new Pd-In2O3-Al2O3 system, the intrinsic activity of In2O3 is highly increased both in terms of STY normalized to In specific surface area and In2O3 mass (4.32 vs 0.56 g gMeOH h−1 gIn2O3-1 of a Pd- In2O3 catalyst operating at 300 \ub0C, 30 bar, 40,800 mL h−1 gcat-1).The combination of ex situ and in situ catalyst characterizations during reduction provides insights into the interaction between Pd and In and with the support. The enhanced activity is likely related to the close proximity of Pd and In2O3, wherein the H2 splitting activity of Pd promotes, in combination with CO2 activation over highly dispersed In2O3 particles, facile formation of CH3OH

    A High Pressure Operando Spectroscopy Examination of Bimetal Interactions in ‘Metal Efficient’ Palladium/In2O3/Al2O3 Catalysts for CO2 Hydrogenation

    Get PDF
    CO2 hydrogenation to methanol has the potential to serve as a sustainable route to a wide variety of hydrocarbons, fuels and plastics in the quest for net zero. Synergistic Pd/In2O3 (Palldium on Indium Oxide) catalysts show high CO2 conversion and methanol selectivity, enhancing methanol yield. The identity of the optimal active site for this reaction is unclear, either as a Pd−In alloy, proximate metals, or distinct sites. In this work, we demonstrate that metal-efficient Pd/In2O3 species dispersed on Al2O3 can match the performance of pure Pd/In2O3 systems. Further, we follow the evolution of both Pd and In sites, and surface species, under operando reaction conditions using X-ray Absorption Spectroscpy (XAS) and infrared (IR) spectroscopy. In doing so, we can determine both the nature of the active sites and the influence on the catalytic mechanism
    corecore