149 research outputs found

    Potentiometric MRI of a Superconcentrated Lithium Electrolyte: Testing the Irreversible Thermodynamics Approach.

    Get PDF
    Superconcentrated electrolytes, being highly thermodynamically nonideal, provide a stringent proving ground for continuum transport theories. Herein, we test an ostensibly complete model of LiPF6 in ethyl-methyl carbonate (EMC) based on the Onsager-Stefan-Maxwell theory from irreversible thermodynamics. We perform synchronous magnetic resonance imaging (MRI) and chronopotentiometry to examine how superconcentrated LiPF6:EMC responds to galvanostatic polarization and open-circuit relaxation. We simulate this experiment using an independently parametrized model with six composition-dependent electrolyte properties, quantified up to saturation. Spectroscopy reveals increasing ion association and solvent coordination with salt concentration. The potentiometric MRI data agree closely with the predicted ion distributions and overpotentials, providing a completely independent validation of the theory. Superconcentrated electrolytes exhibit strong cation-anion interactions and extreme solute-volume effects that mimic elevated lithium transference. Our simulations allow surface overpotentials to be extracted from cell-voltage data to track lithium interfaces. Potentiometric MRI is a powerful tool to illuminate electrolytic transport phenomena

    The enduring value of reciprocal illumination in the era of insect phylogenomics: a response to Cai et al. (2020)

    Get PDF
    Arguably no other group within Coleoptera has received as robust and sustained investigation into their phylogenetic relationships as aquatic beetles. Among this ecological guild, evolutionary relationships of the families within Dytiscoidea, a clade comprising the charismatic diving beetles (Dytiscidae) and their close relatives, have received particular attention. Very recently, four different studies were published investigating the phylogeny of Dytiscoidea, three of which utilized phylogenomic data, the most recent by Cai etal. (2020). Cai et al. (2020) (hereafter CEA) approached investigating theevolutionary relationships among dytiscoid families by reanalysing the transcriptomic dataset of Vasilikopoulos et al. (2019) using different evolutionary models and data trimming regimes. CEAs analyses recovered three different topologies for relationships amongst Dytiscoidea, two of which have been recovered in several previous studies. The primary difference among these topologies is the placement of Hygrobiidae, either as sister to (Dytiscidae (Amphizoidae + Aspidytidae)), sister to Amphizoidae + Aspidytidae, or as sister to Dytiscidae. In CEA, topologies shown in Fig. 1A, C both received maximal (e.g. bootstrap values of 100 and posterior probabilities of 100%) to strong support respectively via their preferred model of evolution. Whereas CEAs recovery of Hygrobiidae sister to Amphizoidae + Aspidytidae was not as strongly supported, Gustafson et al. (2020) recovered this topology primarily with strong to maximal support across all analyses with comprehensive taxon sampling of Dytiscoidea. Rather than treating the three topologies recovered both within their own study and elsewhere as equally viable hypotheses, CEA dismissed the relationships shown in Fig. 1A, B as the result of phylogenetic methodological error, promoting Fig. 1C as their preferred tree because it is consistent with morphology-based views of dytiscoid relationships. Here, we address (i) the manner in which CEA approached reconciling conflicting hypotheses about the evolution of Dytiscoidea; and (ii) the misconception that dytiscoid relationships shown in Fig. 1C are the most consistent with morphology-based views in relation to those of Fig. 1A, B.Fil: Gustafson, Grey T.. University of Kansas; Estados UnidosFil: Miller, Kelly B.. University of New Mexico. Department of Biology; Estados UnidosFil: Michat, Mariano Cruz. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Instituto de Biodiversidad y Biología Experimental y Aplicada. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Instituto de Biodiversidad y Biología Experimental y Aplicada; ArgentinaFil: Alarie, Yves. Laurentian University. Department of Biology; CanadáFil: Baca, Stephen M.. University of Kansas; Estados UnidosFil: Balke, Michael. Zoologische Staatssammlung Munchen; AlemaniaFil: Short, Andrew E. Z.. University of Kansas; Estados Unido

    Ghrelin is an Osteoblast Mitogen and Increases Osteoclastic Bone Resorption In Vitro

    Get PDF
    Ghrelin is released in response to fasting, such that circulating levels are highest immediately prior to meals. Bone turnover is acutely responsive to the fed state, with increased bone resorption during fasting and suppression during feeding. The current study investigated the hypothesis that ghrelin regulates the activity of bone cells. Ghrelin increased the bone-resorbing activity of rat osteoclasts, but did not alter osteoclast differentiation in a murine bone marrow assay nor bone resorption in ex vivo calvarial cultures. Ghrelin showed mitogenic activity in osteoblasts, with a strong effect in human cells and a weaker effect in rat osteoblasts. The expression of the human ghrelin receptor, GHSR, varied among individuals and was detectable in 25–30% of bone marrow and osteoblast samples. However, the rodent Ghsr expression was undetectable in bone cells and cell lines from rat and mouse. These data suggest that elevated levels of ghrelin may contribute to the higher levels of bone turnover that occurs in the fasted state

    High expression of HMGA2 independently predicts poor clinical outcomes in acute myeloid leukemia

    Get PDF
    In acute myeloid leukemia (AML), risk stratification based on cytogenetics and mutation profiling is essential but remains insufficient to select the optimal therapy. Accurate biomarkers are needed to improve prognostic assessment. We analyzed RNA sequencing and survival data of 430 AML patients and identified HMGA2 as a novel prognostic marker. We validated a quantitative PCR test to study the association of HMGA2 expression with clinical outcomes in 358 AML samples. In this training cohort, HMGA2 was highly expressed in 22.3% of AML, mostly in patients with intermediate or adverse cytogenetics. High expression levels of HMGA2 (H + ) were associated with a lower frequency of complete remission (58.8% vs 83.4%, P < 0.001), worse 3-year overall survival (OS, 13.2% vs 43.5%, P < 0.001) and relapse-free survival (RFS, 10.8% vs 44.2%, P < 0.001). A positive HMGA2 test also identified a subgroup of patients unresponsive to standard treatments. Multivariable analyses showed that H + was independently associated with significantly worse OS and RFS, including in the intermediate cytogenetic risk category. These associations were confirmed in a validation cohort of 260 patient samples from the UK NCRI AML17 trial. The HMGA2 test could be implemented in clinical trials developing novel therapeutic strategies for high-risk AML

    Lifespan extension and the doctrine of double effect

    Get PDF
    Recent developments in biogerontology—the study of the biology of ageing—suggest that it may eventually be possible to intervene in the human ageing process. This, in turn, offers the prospect of significantly postponing the onset of age-related diseases. The biogerontological project, however, has met with strong resistance, especially by deontologists. They consider the act of intervening in the ageing process impermissible on the grounds that it would (most probably) bring about an extended maximum lifespan—a state of affairs that they deem intrinsically bad. In a bid to convince their deontological opponents of the permissibility of this act, proponents of biogerontology invoke an argument which is grounded in the doctrine of double effect. Surprisingly, their argument, which we refer to as the ‘double effect argument’, has gone unnoticed. This article exposes and critically evaluates this ‘double effect argument’. To this end, we first review a series of excerpts from the ethical debate on biogerontology in order to substantiate the presence of double effect reasoning. Next, we attempt to determine the role that the ‘double effect argument’ is meant to fulfil within this debate. Finally, we assess whether the act of intervening in ageing actually can be justified using double effect reasoning

    Hydrophilic microporous membranes for selective ion separation and flow-battery energy storage

    Get PDF
    Membranes with fast and selective ion transport are widely used for water purification and devices for energy conversion and storage including fuel cells, redox flow batteries and electrochemical reactors. However, it remains challenging to design cost-effective, easily processed ion-conductive membranes with well-defined pore architectures. Here, we report a new approach to designing membranes with narrow molecular-sized channels and hydrophilic functionality that enable fast transport of salt ions and high size-exclusion selectivity towards small organic molecules. These membranes, based on polymers of intrinsic microporosity containing Tröger’s base or amidoxime groups, demonstrate that exquisite control over subnanometre pore structure, the introduction of hydrophilic functional groups and thickness control all play important roles in achieving fast ion transport combined with high molecular selectivity. These membranes enable aqueous organic flow batteries with high energy efficiency and high capacity retention, suggesting their utility for a variety of energy-related devices and water purification processes

    Viral Small Interfering RNAs Target Host Genes to Mediate Disease Symptoms in Plants

    Get PDF
    The Cucumber mosaic virus (CMV) Y-satellite RNA (Y-Sat) has a small non-protein-coding RNA genome that induces yellowing symptoms in infected Nicotiana tabacum (tobacco). How this RNA pathogen induces such symptoms has been a longstanding question. We show that the yellowing symptoms are a result of small interfering RNA (siRNA)-directed RNA silencing of the chlorophyll biosynthetic gene, CHLI. The CHLI mRNA contains a 22-nucleotide (nt) complementary sequence to the Y-Sat genome, and in Y-Sat-infected plants, CHLI expression is dramatically down-regulated. Small RNA sequencing and 5′ RACE analyses confirmed that this 22-nt sequence was targeted for mRNA cleavage by Y-Sat-derived siRNAs. Transformation of tobacco with a RNA interference (RNAi) vector targeting CHLI induced Y-Sat-like symptoms. In addition, the symptoms of Y-Sat infection can be completely prevented by transforming tobacco with a silencing-resistant variant of the CHLI gene. These results suggest that siRNA-directed silencing of CHLI is solely responsible for the Y-Sat-induced symptoms. Furthermore, we demonstrate that two Nicotiana species, which do not develop yellowing symptoms upon Y-Sat infection, contain a single nucleotide polymorphism within the siRNA-targeted CHLI sequence. This suggests that the previously observed species specificity of Y-Sat-induced symptoms is due to natural sequence variation in the CHLI gene, preventing CHLI silencing in species with a mismatch to the Y-Sat siRNA. Taken together, these findings provide the first demonstration of small RNA-mediated viral disease symptom production and offer an explanation of the species specificity of the viral disease
    corecore