9 research outputs found

    Nuevos entornos artificiales para la diferenciación neural

    Full text link
    [ES] Las patologías del sistema nervioso central y periférico tienen una gran incidencia sobre la población (consecuencias del ictus, enfermedades neurodegenerativas como el Parkinson, trauma, tumores) y aguardan nuevos conceptos para su tratamiento. Las terapias celulares desarrollan la hipótesis general del efecto beneficioso que el aporte de factores y células pluripotentes pueden tener cara a lograr la regeneración de las estructuras dañadas o degeneradas. Para localizar y dirigir este aporte celular y de factores es necesario desarrollar materiales microestructurados que les sirvan de vector. El objetivo de este trabajo consiste en fabricar y diseñar dos entornos artificiales que induzcan la diferenciación neural mediante técnicas de ingeniería tisular. Las células precursoras neurales se encuentran encapsuladas en alginato, un hidrogel. En este primer entorno, se evalúa el efecto que ejerce la presencia o ausencia del factor BDNF (brain-derived neurotrophic factor), así como el efecto del “cross-talk” entre las células de Schwann y los precursores neurales en la diferenciación a linaje neuronal. También se crea un entorno de cocultivo 3D-2D, con las células precursoras neurales en el interior de un “scaffold” de PEA y células de Schwann cultivadas sobre la superficie de un “film” de PEA, donde también se estudia el posible efecto de los factores que secretan las células de Schwann sobre los precursores neurales en el proceso de diferenciación neural. En ambos entornos artificiales se observa que la presencia de células de Schwann induce la diferenciación neural de los precursores neurales.[EN] The pathologies of the central and peripheral nervous system have a great impact on the population (consequences of stroke, neurodegenerative diseases such as Parkinson's, trauma, tumors) that await new concepts for treatment. Cell therapies develop the general hypothesis about the beneficial effect of input factors and pluripotent cells to achieve the regeneration of damaged or degenerated structures. To target and direct this cell and factor supply is necessary to develop microstructured materials. The objective of this work is to design and manufacture two artificial environments that induce neural differentiation by tissue engineering techniques. Neural precursor cells were encapsulated in alginate, a hydrogel. In the first setting, the effect that the presence or absence of the factor BDNF (brain-derived neurotrophic factor), and the effect of cross-talk between Schwann cells and neural precursors in the neural lineage differentiation were evaluated. Environment co-culture 3D-2D is also created, with the neural precursor cells within a scaffold of PEA and Schwann cells cultured on the surface of a film of PEA, which also the effect of secreted Schwann cells factors on neural precursors in the process of neural differentiation were analysed. In both artificial environments is observed that the presence of Schwann cells induces neural differentiation of neural precursors.Andreu Oller, C. (2014). Nuevos entornos artificiales para la diferenciación neural. http://hdl.handle.net/10251/39793.Archivo delegad

    An Immune Gene Expression Signature Associated With Development of Human Hepatocellular Carcinoma Identifies Mice That Respond to Chemopreventive Agents

    Get PDF
    Cirrhosis and chronic inflammation precede development of hepatocellular carcinoma (HCC) in approximately 80% of cases. We investigated immune-related gene expression patterns in liver tissues surrounding early-stage HCCs and chemopreventive agents that might alter these patterns to prevent liver tumorigenesis.We analyzed gene expression profiles of non-tumor liver tissues from 392 patients with early-stage HCC (training set, n=167 and validation set, n=225) and liver tissue from patients with cirrhosis without HCC (n=216, controls) to identify changes in expression of genes that regulate the immune response that could contribute to hepatocarcinogenesis. We defined 172 genes as markers for this deregulated immune response, which we called the immune-mediated cancer field (ICF). We analyzed the expression data of liver tissues from 216 patients with cirrhosis without HCC and investigated the association between this gene expression signature and development of HCC and outcomes of patients (median follow-up 10 years). Human liver tissues were also analyzed by histology. C57BL/6J mice were given a single injection of N-nitrosodiethylamine followed by weekly doses of carbon tetrachloride to induce liver fibrosis and tumorigenesis. Mice were then given orally the multiple tyrosine inhibitor nintedanib or vehicle (controls); liver tissues were collected and histology, transcriptome, and protein analyses were performed. We also analyzed transcriptomes of liver tissues collected from mice on a choline-deficient high-fat diet, which developed chronic liver inflammation and tumors, given orally aspirin and clopidogrel or the anti-inflammatory agent sulindac vs mice on a chow (control) diet.We found the ICF gene expression pattern in 50% of liver tissues from patients with cirrhosis without HCC and in 60% of non-tumor liver tissues from patients with early-stage HCC. The liver tissues with the ICF gene expression pattern had 3 different features: increased numbers of effector T cells; increased expression of genes that suppress the immune response and activation of transforming growth factor beta signaling; or expression of genes that promote inflammation and activation of interferon gamma signaling. Patients with cirrhosis and liver tissues with the immunosuppressive profile (10% of cases) had a higher risk of HCC (hazard ratio, 2.41; 95% 1.21-4.80). Mice with chemically-induced fibrosis or diet-induced steatohepatitis given nintedanib or aspirin and clopidogrel downregulated the ICF gene expression pattern in liver and developed fewer and smaller tumors than mice given vehicle.We identified an immune-related gene expression pattern in liver tissues of patients with early-stage HCC, called the ICF, that associates with risk of HCC development in patients with cirrhosis. Administration of nintedanib or aspirin and clopidogrel to mice with chronic liver inflammation caused loss of this gene expression pattern and developed fewer and smaller liver tumors. Agents that alter immune regulatory gene expression patterns associated with carcinogenesis might be tested as chemopreventive agents in patients with cirrhosis

    Molecular characterization of hepatocellular carcinoma in patients with nonalcoholic steatohepatitis

    Full text link
    Background and aims: Non-alcoholic steatohepatitis (NASH)-related hepatocellular carcinoma (HCC) is increasing globally, but its molecular features are not well defined. We aimed to identify unique molecular traits characterising NASH-HCC compared to other HCC aetiologies. Methods: We collected 80 NASH-HCC and 125 NASH samples from 5 institutions. Expression array (n = 53 NASH-HCC; n = 74 NASH) and whole exome sequencing (n = 52 NASH-HCC) data were compared to HCCs of other aetiologies (n = 184). Three NASH-HCC mouse models were analysed by RNA-seq/expression-array (n = 20). Activin A receptor type 2A (ACVR2A) was silenced in HCC cells and proliferation assessed by colorimetric and colony formation assays. Results: Mutational profiling of NASH-HCC tumours revealed TERT promoter (56%), CTNNB1 (28%), TP53 (18%) and ACVR2A (10%) as the most frequently mutated genes. ACVR2A mutation rates were higher in NASH-HCC than in other HCC aetiologies (10% vs. 3%, p <0.05). In vitro, ACVR2A silencing prompted a significant increase in cell proliferation in HCC cells. We identified a novel mutational signature (MutSig-NASH-HCC) significantly associated with NASH-HCC (16% vs. 2% in viral/alcohol-HCC, p = 0.03). Tumour mutational burden was higher in non-cirrhotic than in cirrhotic NASH-HCCs (1.45 vs. 0.94 mutations/megabase; p <0.0017). Compared to other aetiologies of HCC, NASH-HCCs were enriched in bile and fatty acid signalling, oxidative stress and inflammation, and presented a higher fraction of Wnt/TGF-β proliferation subclass tumours (42% vs. 26%, p = 0.01) and a lower prevalence of the CTNNB1 subclass. Compared to other aetiologies, NASH-HCC showed a significantly higher prevalence of an immunosuppressive cancer field. In 3 murine models of NASH-HCC, key features of human NASH-HCC were preserved. Conclusions: NASH-HCCs display unique molecular features including higher rates of ACVR2A mutations and the presence of a newly identified mutational signature. Lay summary: The prevalence of hepatocellular carcinoma (HCC) associated with non-alcoholic steatohepatitis (NASH) is increasing globally, but its molecular traits are not well characterised. In this study, we uncovered higher rates of ACVR2A mutations (10%) - a potential tumour suppressor - and the presence of a novel mutational signature that characterises NASH-related HCC

    Molecular portrait of high alpha-fetoprotein in hepatocellular carcinoma: implications for biomarker-driven clinical trials

    No full text
    The clinical utility of serum alpha-fetoprotein (AFP) in patients with hepatocellular carcinoma (HCC) is widely recognised. However, a clear understanding of the mechanisms of AFP overexpression and the molecular traits of patients with AFP-high tumours are not known. We assessed transcriptome data, whole-exome sequencing data and DNA methylome profiling of 520 HCC patients from two independent cohorts to identify distinct molecular traits of patients with AFP-high tumours (serum concentration?>?400?ng/ml), which represents an accepted prognostic cut-off and a predictor of response to ramucirumab. Those AFP-high tumours (18% of resected cases) were characterised by significantly lower AFP promoter methylation (p?<?0.001), significant enrichment of progenitor-cell features (CK19, EPCAM), higher incidence of BAP1 oncogene mutations (8.5% vs 1.6%) and lower mutational rates of CTNNB1 (14% vs 30%). Specifically, AFP-high tumours displayed significant activation of VEGF signalling (p?<?0.001), which might provide the rationale for the reported benefit of ramucirumab in this subgroup of patients

    Molecular portrait of high alpha-fetoprotein in hepatocellular carcinoma: implications for biomarker-driven clinical trials

    No full text
    The clinical utility of serum alpha-fetoprotein (AFP) in patients with hepatocellular carcinoma (HCC) is widely recognised. However, a clear understanding of the mechanisms of AFP overexpression and the molecular traits of patients with AFP-high tumours are not known. We assessed transcriptome data, whole-exome sequencing data and DNA methylome profiling of 520 HCC patients from two independent cohorts to identify distinct molecular traits of patients with AFP-high tumours (serum concentration?>?400?ng/ml), which represents an accepted prognostic cut-off and a predictor of response to ramucirumab. Those AFP-high tumours (18% of resected cases) were characterised by significantly lower AFP promoter methylation (p?<?0.001), significant enrichment of progenitor-cell features (CK19, EPCAM), higher incidence of BAP1 oncogene mutations (8.5% vs 1.6%) and lower mutational rates of CTNNB1 (14% vs 30%). Specifically, AFP-high tumours displayed significant activation of VEGF signalling (p?<?0.001), which might provide the rationale for the reported benefit of ramucirumab in this subgroup of patients

    Molecular markers of response to anti-PD1 therapy in advanced hepatocellular carcinoma.

    No full text
    BACKGROUND AND AIMS Single agent anti-PD1 checkpoint inhibitors convey outstanding clinical benefits in a small fraction (∼20%) of patients with advanced hepatocellular carcinoma (aHCC) but the molecular mechanisms determining response are unknown. To fill this gap, we herein analyze the molecular and immune traits of aHCC in patients treated with anti-PD1. METHODS Overall, 111 tumor samples from patients with aHCC were obtained from 13 centers prior to systemic therapies. We performed molecular analysis and immune deconvolution using whole genome expression data (n=83), mutational analysis (n=72) and histological evaluation with an endpoint of objective response. RESULTS Among 83 patients with transcriptomic data, 28 were treated in frontline whereas 55 patients were treated after tyrosine-kinase inhibitors (TKI) either in 2nd or 3rd line. Responders treated in frontline showed upregulated Interferon-γ-signaling and MHCII-related antigen presentation. We generated an 11-gene signature (IFNAP), capturing these molecular features, which predicts response and survival in patients treated with anti-PD1 in frontline. The signature was validated in a separate cohort of aHCC and >240 patients with other solid cancer types where it also predicted response and survival. Of note, the same signature was unable to predict response in archival tissue of patients treated with frontline TKIs, highlighting the need for fresh biopsies prior to immunotherapy. CONCLUSION IFN-signaling and MHCII-related genes are key molecular features of HCCs responding to anti-PD1. A novel 11-gene signature predicts response in frontline aHCC - but not in patients pre-treated with TKIs. These results have to be confirmed in prospective studies and highlight the need for biopsies prior immunotherapy to identify biomarkers of response

    Molecular characterisation of hepatocellular carcinoma in patients with non-alcoholic steatohepatitis.

    No full text
    BACKGROUND AND AIMS Non-alcoholic steatohepatitis (NASH)-related hepatocellular carcinoma (HCC) is increasing globally, but its molecular features are not well defined. We aimed to identify unique molecular traits characterising NASH-HCC compared to other HCC aetiologies. METHODS We collected 80 NASH-HCC and 125 NASH samples from 5 institutions. Expression array (n = 53 NASH-HCC; n = 74 NASH) and whole exome sequencing (n = 52 NASH-HCC) data were compared to HCCs of other aetiologies (n = 184). Three NASH-HCC mouse models were analysed by RNA-seq/expression-array (n = 20). Activin A receptor type 2A (ACVR2A) was silenced in HCC cells and proliferation assessed by colorimetric and colony formation assays. RESULTS Mutational profiling of NASH-HCC tumours revealed TERT promoter (56%), CTNNB1 (28%), TP53 (18%) and ACVR2A (10%) as the most frequently mutated genes. ACVR2A mutation rates were higher in NASH-HCC than in other HCC aetiologies (10% vs. 3%, p <0.05). In vitro, ACVR2A silencing prompted a significant increase in cell proliferation in HCC cells. We identified a novel mutational signature (MutSig-NASH-HCC) significantly associated with NASH-HCC (16% vs. 2% in viral/alcohol-HCC, p = 0.03). Tumour mutational burden was higher in non-cirrhotic than in cirrhotic NASH-HCCs (1.45 vs. 0.94 mutations/megabase; p <0.0017). Compared to other aetiologies of HCC, NASH-HCCs were enriched in bile and fatty acid signalling, oxidative stress and inflammation, and presented a higher fraction of Wnt/TGF-β proliferation subclass tumours (42% vs. 26%, p = 0.01) and a lower prevalence of the CTNNB1 subclass. Compared to other aetiologies, NASH-HCC showed a significantly higher prevalence of an immunosuppressive cancer field. In 3 murine models of NASH-HCC, key features of human NASH-HCC were preserved. CONCLUSIONS NASH-HCCs display unique molecular features including higher rates of ACVR2A mutations and the presence of a newly identified mutational signature. LAY SUMMARY The prevalence of hepatocellular carcinoma (HCC) associated with non-alcoholic steatohepatitis (NASH) is increasing globally, but its molecular traits are not well characterised. In this study, we uncovered higher rates of ACVR2A mutations (10%) - a potential tumour suppressor - and the presence of a novel mutational signature that characterises NASH-related HCC

    CXCR2 inhibition enables NASH-HCC immunotherapy

    Get PDF
    Objective: Hepatocellular carcinoma (HCC) is increasingly associated with non-alcoholic steatohepatitis (NASH). HCC immunotherapy offers great promise; however, recent data suggests NASH-HCC may be less sensitive to conventional immune checkpoint inhibition (ICI). We hypothesised that targeting neutrophils using a CXCR2 small molecule inhibitor may sensitise NASH-HCC to ICI therapy. Design: Neutrophil infiltration was characterised in human HCC and mouse models of HCC. Late-stage intervention with anti-PD1 and/or a CXCR2 inhibitor was performed in murine models of NASH-HCC. The tumour immune microenvironment was characterised by imaging mass cytometry, RNA-seq and flow cytometry. Results: Neutrophils expressing CXCR2, a receptor crucial to neutrophil recruitment in acute-injury, are highly represented in human NASH-HCC. In models of NASH-HCC lacking response to ICI, the combination of a CXCR2 antagonist with anti-PD1 suppressed tumour burden and extended survival. Combination therapy increased intratumoural XCR1+ dendritic cell activation and CD8+ T cell numbers which are associated with anti-tumoural immunity, this was confirmed by loss of therapeutic effect on genetic impairment of myeloid cell recruitment, neutralisation of the XCR1-ligand XCL1 or depletion of CD8+ T cells. Therapeutic benefit was accompanied by an unexpected increase in tumour-associated neutrophils (TANs) which switched from a protumour to anti-tumour progenitor-like neutrophil phenotype. Reprogrammed TANs were found in direct contact with CD8+ T cells in clusters that were enriched for the cytotoxic anti-tumoural protease granzyme B. Neutrophil reprogramming was not observed in the circulation indicative of the combination therapy selectively influencing TANs. Conclusion: CXCR2-inhibition induces reprogramming of the tumour immune microenvironment that promotes ICI in NASH-HCC
    corecore