14 research outputs found

    The Microalga Skeletonema marinoi Induces Apoptosis and DNA Damage in K562 Cell Line by Modulating NADPH Oxidase

    Get PDF
    Chronic myeloid leukemia (CML) is a myeloproliferative disease that activates multiple signaling pathways, causing cells to produce higher levels of reactive oxygen species (ROS). Nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOXs) are a major generator of ROS in leukemia, and marine natural products have shown promising activities for the treatment of hematopoietic malignancies. In the present study, we investigated the effect of the marine microalga Skeletonema marinoi (S.M.), a ubiquitous diatom that forms massive blooms in the oceans, on the human leukemia cell line K562. The effects of S.M. extract on cell viability, production of ROS, nitric oxide (NO), and apoptosis were examined. In this preliminary work, S.M. was able to decrease cell viability (p < 0.05) and increase apoptosis levels (p < 0.05) in K562 cells after 48 h of treatment. In addition, the levels of NOX, NO, and malondialdehyde (MDA) were reduced in K562-treated cells (p < 0.05), whereas the levels of SOD, CAT, and GPx increased during treatment (p < 0.05). Finally, analyzing Bax and Bcl-2 expression, we found a significant increase in the proapoptotic protein Bax and a sustained decrease in the antiapoptotic protein Bcl-2 (p < 0.05) in the K562-treated cells

    Effects of Some New Antioxidants on Apoptosis and ROS Production in AFB1 Treated Chickens

    Get PDF
    Aflatoxin B1 (AFB1), the mainly Aspergillus fungi derived mycotoxin, is well known for its carcinogenic effects on liver, and frequently occurs in food supplies, leading to fatal consequences in both farm animals and humans. Poultry, one of the most important segments of agro-industry, has been demonstrated to be extremely sensitive to AFB1 intake, which results in chickens' low performance, decreased quality of both eggs and meat and a negative economic feedback. Oxidative stress caused by AFB1 plays a crucial role in chickens' kidney damage by generating lipid peroxidation accompanied by a concomitant increase in the antioxidant enzymes involved in ROS metabolism (NADPH oxidase isoform 4 (NOX4) and its regulatory subunit p47-phox). The aim of the present work was to investigate the benefits of dietary supplementation, in chickens affected by AFB1 mycotoxicosis, using a new Feed additive (FA) containing a mixture of a tri-octahedral Na-smectite with a ligno-cellulose-based material an antioxidant adjuvant. Exposure of AFB1-treated chickens to the feed additive induced a significant down-regulation of both NOX4 and p47-phox genes expression levels. This trend was confirmed by their protein expression, demonstrating the great potential of the FA to counteract oxidative stress. To conclude, these results could open new perspectives in the methods of feeding chickens, using eco-friendly dietary supplements able to reduce AFB1-induced mycotoxicosis and to ameliorate poultry performances

    Ochratoxin A and Kidney Oxidative Stress: The Role of Nutraceuticals in Veterinary Medicine&mdash;A Review

    No full text
    The problem of residues of toxic contaminants in food products has assumed considerable importance in terms of food safety. Naturally occurring contaminants, such as mycotoxins, are monitored routinely in the agricultural and food industries. Unfortunately, the consequences of the presence of mycotoxins in foodstuffs are evident in livestock farms, where both subacute and chronic effects on animal health are observed and could have non-negligible effects on human health. Ochratoxin A (OTA) is a common mycotoxin that contaminates food and feeds. Due to its thermal stability, the eradication of OTA from the food chain is very difficult. Consequently, humans and animals are frequently exposed to OTA in daily life. In this review article, we will devote time to highlighting the redox-based nephrotoxicity that occurs during OTA intoxication. In the past few decades, the literature has improved on the main molecules and enzymes involved in the redox signaling pathway as well as on some new antioxidant compounds as therapeutic strategies to counteract oxidative stress. The knowledge shown in this work will address the use of nutraceutical substances as dietary supplements, which would in turn improve the prophylactic and pharmacological treatment of redox-associated kidney diseases during OTA exposure, and will attempt to promote animal feed supplementation

    Curcumin Modulates Nitrosative Stress, Inflammation, and DNA Damage and Protects against Ochratoxin A-Induced Hepatotoxicity and Nephrotoxicity in Rats

    No full text
    Ochratoxin A (OTA) is a fungal toxin of critical concern for food safety both for human health and several animal species, also representing a cancer threat to humans. Curcumin (CURC) is a natural polyphenol that has anti-apoptotic, anti-inflammatory, and antioxidant effects. The aim of this study was to investigate the cytoprotective effect of CURC against OTA-induced nephrotoxicity and hepatotoxicity through the study of the nitrosative stress, pro-inflammatory cytokines, and deoxyribonucleic acid (DNA) damage. Sprague Dawley rats were daily treated with CURC (100 mg/kg b.w.), OTA (0.5 mg/kg b.w), or CURC with OTA by oral gavage for 14 days. Our results demonstrated that OTA exposure was associated with significant increase of pro-inflammatory and DNA oxidative-damage biomarkers. Moreover, OTA induced the inducible nitric oxide synthase, (iNOS) resulting in increased nitric oxide (NO) levels both in kidney and liver. The co-treatment OTA + CURC counteracted the harmful effects of chronic OTA treatment by regulating inflammation, reducing NO levels and oxidative DNA damage in kidney and liver tissues. Histology revealed that OTA + CURC treatment determinates mainly an Iba1+ macrophagic infiltration with fewer CD3+ T-lymphocytes in the tissues. In conclusion, we evidenced that CURC exerted cytoprotective and antioxidant activities against OTA-induced toxicity in rats

    Effects of Curcumin on the Renal Toxicity Induced by Ochratoxin A in Rats

    No full text
    Ochratoxin A (OTA) is a powerful nephrotoxin and the severity of its damage to kidneys depends on both the dose and duration of exposure. According to the scientific data currently available, the mechanism of action still is not completely clarified, but it is supposed that oxidative stress is responsible for OTA-induced nephrotoxicity. Bioactive compound use has emerged as a potential approach to reduce chronic renal failure. Therefore, curcumin (CURC), due to its therapeutic effects, has been chosen for our study to reduce the toxic renal effects induced by OTA. CURC effects are examined in Sprague Dawley rats treated with CURC (100 mg/kg), alone or in combination with OTA (0.5 mg/kg), by gavage daily for 14 days. The end result of the experiment finds rats treated with OTA show alterations in biochemical and oxidative stress parameters in the kidney, related to a decrease in the Glomerular Filtration Rate (GFR). Conversely, the administration of CURC attenuates oxidative stress and prevents glomerular hyperfiltration versus the OTA group. Furthermore, kidney histological tests show a reduction in glomerular and tubular damage, inflammation and tubulointerstitial fibrosis. This study shows that CURC can mitigate OTA-induced oxidative damage in the kidneys of rats

    Protective Effects of New Antioxidants in OTA-Treated Chicken Kidney

    No full text
    Ochratoxin A (OTA) is a mycotoxin which represents an emerging problem for both animal and human health, due to its high presence in feed and foods. Exposure to OTA is associated with oxidative stress-induced nephrotoxicity. Therefore, the identification of new antioxidant or adsorbent substances with protective action constitutes one of the main challenges to reduce the negative effects induced by mycotoxins. For this purpose, we investigated the effect of two innovative feed additives, a bio-organoclay (CHS) and a mixture of a tri-octahedral Na-smectite with a ligno-cellulose based material (MIX) alone or in combination with OTA in kidneys of treated chickens. Real-Time PCR analyses for NADPH oxidase 4 (NOX) and p47-phox were performed to evaluate oxidative stress. Our results demonstrated an increase in NOX and p47-phox levels in OTA-treated chickens. Moreover, CHS, more than MIX, was able to reduce OTA-induced toxicity, restoring NOX levels. Taken together, these findings highlight the potential beneficial role of CHS in reverting OTA-induced nephrotoxicity in chickens and could lead to the production of healthier foods with beneficial consequences for human and animal health

    Effects of a Red Orange and Lemon Extract in Obese Diabetic Zucker Rats: Role of Nicotinamide Adenine Dinucleotide Phosphate Oxidase

    No full text
    Diabetic nephropathy (DN) is the primary cause of end-stage renal disease, worldwide, and oxidative stress has been recognized as a key factor in the pathogenesis and progression of DN. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase has the most important contribution to reactive oxygen species generation during the development of DN. Bioactive compound use has emerged as a potential approach to reduce chronic renal failure. Therefore, a red orange and lemon extract (RLE) rich in anthocyanins was chosen in our study, to reduce the toxic renal effects during the development of DN in Zucker diabetic fatty rat (ZDF). RLE effects were examined daily for 24 weeks, through gavage, in ZDF rats treated with RLE (90 mg/kg). At the end of the experiment, ZDF rats treated with RLE showed a reduction of the diabetes-associated up-regulation of both NOX4 and the p47-phox and p22-phox subunits, and restored the BAX/BCL-2 ratio respect to ZDF rats. Furthermore, RLE was able to reduce the oxidative DNA damage measured in urine samples in ZDF rats. This study showed that RLE could prevent the renal damage induced by DN through its capacity to inhibit NOX4 and apoptosis mechanisms

    Effects of a Red Orange and Lemon Extract in Obese Diabetic Zucker Rats: Role of Nicotinamide Adenine Dinucleotide Phosphate Oxidase

    No full text
    Diabetic nephropathy (DN) is the primary cause of end-stage renal disease, worldwide, and oxidative stress has been recognized as a key factor in the pathogenesis and progression of DN. Nicotinamide adenine dinucleotide phosphate (NADPH) oxidase has the most important contribution to reactive oxygen species generation during the development of DN. Bioactive compound use has emerged as a potential approach to reduce chronic renal failure. Therefore, a red orange and lemon extract (RLE) rich in anthocyanins was chosen in our study, to reduce the toxic renal effects during the development of DN in Zucker diabetic fatty rat (ZDF). RLE effects were examined daily for 24 weeks, through gavage, in ZDF rats treated with RLE (90 mg/kg). At the end of the experiment, ZDF rats treated with RLE showed a reduction of the diabetes-associated up-regulation of both NOX4 and the p47-phox and p22-phox subunits, and restored the BAX/BCL-2 ratio respect to ZDF rats. Furthermore, RLE was able to reduce the oxidative DNA damage measured in urine samples in ZDF rats. This study showed that RLE could prevent the renal damage induced by DN through its capacity to inhibit NOX4 and apoptosis mechanisms.status: publishe

    Potential Approaches Versus Approved or Developing Chronic Myeloid Leukemia Therapy

    No full text
    Tyrosine kinase inhibitors (TKIs) have revolutionized the treatment of patients with chronic myeloid leukemia (CML). However, continued use of these inhibitors has contributed to the increase in clinical resistance and the persistence of resistant leukemic stem cells (LSCs). So, there is an urgent need to introduce additional targeted and selective therapies to eradicate quiescent LSCs, and to avoid the relapse and disease progression. Here, we focused on emerging BCR-ABL targeted and non-BCR-ABL targeted drugs employed in clinical trials and on alternative CML treatments, including antioxidants, oncolytic virus, engineered exosomes, and natural products obtained from marine organisms that could pave the way for new therapeutic approaches for CML patients
    corecore