287 research outputs found

    3D Flow Field Measurements Outside Nanopores

    Get PDF
    We demonstrate a non-stereoscopic, video-based particle tracking system with optical tweezers to study fluid flow in 3D in the vicinity of glass nanopores. In particular, we used the Quadrant Interpolation algorithm to extend our video-based particle tracking to displacements out of the trapping plane of the tweezers. This permitted the study of flow from nanopores oriented at an angle to the trapping plane, enabling the mounting of nanopores on a micromanipulator with which it was then possible to automate the mapping procedure. Mapping of voltage driven flow in 3D volumes outside nanopores revealed polarity dependent flow fields. This is in agreement with the model of voltage driven flow in conical nanopores depending on the interaction of distinct flows within the nanopore and along the outer walls.Comment: 3 pages, 3 figure

    Capsaicin- resistant arterial baroreceptors

    Get PDF
    BACKGROUND: Aortic baroreceptors (BRs) comprise a class of cranial afferents arising from major arteries closest to the heart whose axons form the aortic depressor nerve. BRs are mechanoreceptors that are largely devoted to cardiovascular autonomic reflexes. Such cranial afferents have either lightly myelinated (A-type) or non-myelinated (C-type) axons and share remarkable cellular similarities to spinal primary afferent neurons. Our goal was to test whether vanilloid receptor (TRPV1) agonists, capsaicin (CAP) and resiniferatoxin (RTX), altered the pressure-discharge properties of peripheral aortic BRs. RESULTS: Periaxonal application of 1 μM CAP decreased the amplitude of the C-wave in the compound action potential conducting at <1 m/sec along the aortic depressor nerve. 10 μM CAP eliminated the C-wave while leaving intact the A-wave conducting in the A-δ range (<12 m/sec). These whole nerve results suggest that TRPV1 receptors are expressed along the axons of C- but not A-conducting BR axons. In an aortic arch – aortic nerve preparation, intralumenal perfusion with 1 μM CAP had no effect on the pressure-discharge relations of regularly discharging, single fiber BRs (A-type) – including the pressure threshold, sensitivity, frequency at threshold, or maximum discharge frequency (n = 8, p > 0.50) but completely inhibited discharge of an irregularly discharging BR (C-type). CAP at high concentrations (10–100 μM) depressed BR sensitivity in regularly discharging BRs, an effect attributed to non-specific actions. RTX (≤ 10 μM) did not affect the discharge properties of regularly discharging BRs (n = 7, p > 0.18). A CAP-sensitive BR had significantly lower discharge regularity expressed as the coefficient of variation than the CAP-resistant fibers (p < 0.002). CONCLUSION: We conclude that functional TRPV1 channels are present in C-type but not A-type (A-δ) myelinated aortic arch BRs. CAP has nonspecific inhibitory actions that are unlikely to be related to TRV1 binding since such effects were absent with the highly specific TRPV1 agonist RTX. Thus, CAP must be used with caution at very high concentrations

    Tyrosine kinase inhibitors and interferon‐α increase tunneling nanotube (TNT) formation and cell adhesion in chronic myeloid leukemia (CML) cell lines (

    Get PDF
    Chronic myeloid leukemia (CML) is a stem cell disease of the bone marrow where mechanisms of inter‐leukemic communication and cell‐to‐cell interactions are proposed to be important for optimal therapy response. Tunneling nanotubes (TNTs) are novel intercellular communication structures transporting different cargos with potential implications in therapy resistance. Here, we have investigated TNTs in CML cells and following treatment with the highly effective CML therapeutics tyrosine kinase inhibitors (TKIs) and interferon‐α (IFNα). CML cells from chronic phase CML patients as well as the blast crisis phase cell lines, Kcl‐22 and K562, formed few or no TNTs. Treatment with imatinib increased TNT formation in both Kcl‐22 and K562 cells, while nilotinib or IFNα increased TNTs in Kcl‐22 cells only where the TNT increase was associated with adherence to fibronectin‐coated surfaces, altered morphology, and reduced movement involving β1integrin. Ex vivo treated cells from chronic phase CML patients showed limited changes in TNT formation similarly to bone marrow cells from healthy individuals. Interestingly, in vivo nilotinib treatment in a Kcl‐22 subcutaneous mouse model resulted in morphological changes and TNT‐like structures in the tumor‐derived Kcl‐22 cells. Our results demonstrate that CML cells express low levels of TNTs, but CML therapeutics increase TNT formation in designated cell models indicating TNT functionality in bone marrow derived malignancies and their microenvironment.publishedVersio

    Survey of the needs of patients with spinal cord injury: impact and priority for improvement in hand function in tetraplegics\ud

    Get PDF
    Objective: To investigate the impact of upper extremity deficit in subjects with tetraplegia.\ud \ud Setting: The United Kingdom and The Netherlands.\ud \ud Study design: Survey among the members of the Dutch and UK Spinal Cord Injury (SCI) Associations.\ud \ud Main outcome parameter: Indication of expected improvement in quality of life (QOL) on a 5-point scale in relation to improvement in hand function and seven other SCI-related impairments.\ud \ud Results: In all, 565 subjects with tetraplegia returned the questionnaire (overall response of 42%). Results in the Dutch and the UK group were comparable. A total of 77% of the tetraplegics expected an important or very important improvement in QOL if their hand function improved. This is comparable to their expectations with regard to improvement in bladder and bowel function. All other items were scored lower.\ud \ud Conclusion: This is the first study in which the impact of upper extremity impairment has been assessed in a large sample of tetraplegic subjects and compared to other SCI-related impairments that have a major impact on the life of subjects with SCI. The present study indicates a high impact as well as a high priority for improvement in hand function in tetraplegics.\ud \u

    Neurophysiological modeling of bladder afferent activity in the rat overactive bladder model

    Get PDF
    The overactive bladder (OAB) is a syndrome-based urinary dysfunction characterized by “urgency, with or without urge incontinence, usually with frequency and nocturia”. Earlier we developed a mathematical model of bladder nerve activity during voiding in anesthetized rats and found that the nerve activity in the relaxation phase of voiding contractions was all afferent. In the present study, we applied this mathematical model to an acetic acid (AA) rat model of bladder overactivity to study the sensitivity of afferent fibers in intact nerves to bladder pressure and volume changes. The afferent activity in the filling phase and the slope, i.e., the sensitivity of the afferent fibers to pressure changes in the post-void relaxation phase, were found to be significantly higher in AA than in saline measurements, while the offset (nerve activity at pressure ~0) and maximum pressure were comparable. We have thus shown, for the first time, that the sensitivity of afferent fibers in the OAB can be studied without cutting nerves or preparation of single fibers. We conclude that bladder overactivity induced by AA in rats is neurogenic in origin and is caused by increased sensitivity of afferent sensors in the bladder wall

    Resuscitation of Newborn Piglets. Short-Term Influence of FiO2 on Matrix Metalloproteinases, Caspase-3 and BDNF

    Get PDF
    Perinatal hypoxia-ischemia is a major cause of mortality and cerebral morbidity, and using oxygen during newborn resuscitation may further harm the brain. The aim was to examine how supplementary oxygen used for newborn resuscitation would influence early brain tissue injury, cell death and repair processes and the regulation of genes related to apoptosis, neurodegeneration and neuroprotection.Anesthetized newborn piglets were subjected to global hypoxia and then randomly assigned to resuscitation with 21%, 40% or 100% O(2) for 30 min and followed for 9 h. An additional group received 100% O(2) for 30 min without preceding hypoxia. The left hemisphere was used for histopathology and immunohistochemistry and the right hemisphere was used for in situ zymography in the corpus striatum; gene expression and the activity of various relevant biofactors were measured in the frontal cortex. There was an increase in the net matrix metalloproteinase gelatinolytic activity in the corpus striatum from piglets resuscitated with 100% oxygen vs. 21%. Hematoxylin-eosin (HE) staining revealed no significant changes. Nine hours after oxygen-assisted resuscitation, caspase-3 expression and activity was increased by 30-40% in the 100% O(2) group (n = 9/10) vs. the 21% O(2) group (n = 10; p<0.04), whereas brain-derived neurotrophic factor (BDNF) activity was decreased by 65% p<0.03.The use of 100% oxygen for resuscitation resulted in increased potentially harmful proteolytic activities and attenuated BDNF activity when compared with 21%. Although there were no significant changes in short term cell loss, hyperoxia seems to cause an early imbalance between neuroprotective and neurotoxic mechanisms that might compromise the final pathological outcome

    New potential antitumoral fluorescent tetracyclic thieno[3,2-b]pyridine derivatives: interaction with DNA and nanosized liposomes

    Get PDF
    Fluorescence properties of two new potential antitumoral tetracyclic thieno[3,2-b]pyridine derivatives were studied in solution and in liposomes of DPPC (dipalmitoyl phosphatidylcholine), egg lecithin (phosphatidylcholine from egg yolk; Egg-PC) and DODAB (dioctadecyldimethylammonium bromide). Compound 1, pyrido[2',3':3,2]thieno[4,5-d]pyrido[1,2-a]pyrimidin-6-one, exhibits reasonably high fluorescence quantum yields in all solvents studied (0.20 ≤ ΦF ≤ 0.30), while for compound 2, 3-[(p-methoxyphenyl)ethynyl]pyrido[2',3':3,2]thieno[4,5-d]pyrido[1,2-a]pyrimidin-6-one, the values are much lower (0.01 ≤ ΦF ≤ 0.05). The interaction of these compounds with salmon sperm DNA was studied using spectroscopic methods, allowing the determination of intrinsic binding constants, Ki = (8.7 ± 0.9) × 103 M-1 for compound 1 and Ki = (5.9 ± 0.6) × 103 M-1 for 2, and binding site sizes of n = 11 ± 3 and n = 7 ± 2 base pairs, respectively. Compound 2 is the most intercalative compound in salmon sperm DNA (35%), while for compound 1 only 11% of the molecules are intercalated. Studies of incorporation of both compounds in liposomes of DPPC, Egg-PC and DODAB revealed that compound 2 is mainly located in the hydrophobic region of the lipid bilayer, while compound 1 prefers a hydrated and fluid environment

    Readability estimates for commonly used health-related quality of life surveys

    Get PDF
    To estimate readability of seven commonly used health-related quality of life instruments: SF-36, HUI, EQ-5D, QWB-SA, HALex, Minnesota Living with Heart Failure Questionnaire (MLHFQ), and the NEI-VFQ-25. The Flesch–Kincaid (F–K) and Flesch Reading Ease (FRE) formulae were used to estimate readability for every item in each measure. The percentage of items that require more than 5 years of formal schooling according to F–K was 50 for the EQ-5D, 53 for the SF-36, 80 for the VFQ-25, 85 for the QWB-SA, 100 for the HUI, HALex, and the MLHFQ. The percentage of items deemed harder than “easy” according to FRE was 50 for the SF-36, 67 for the EQ-5D, 79 for the QWB-SA, 80 for the VFQ-25, 100 for the HUI, HALex, and the MLHFQ. All seven surveys have a substantial number of items with high readability levels that may not be appropriate for the general population
    corecore