170 research outputs found

    Wayfinding and Perception Abilities for Pedestrian Simulations

    Get PDF
    Computer simulations of pedestrian dynamics are common and reliable tools in order to evaluate safety risks of facilities. However, still many soft- ware frameworks for evacuation simulations imply the assumption that all simulated pedestrians are familiar with their environment and therefore take the shortest path to the outside. In fact, the spatial knowledge of people generally varies. Thus, the assumption that all persons of a build- ing possess comprehensive spatial knowledge is a rough approximation of the reality. Especially for simulations in complex buildings the reliability of this approximation is questionable. In order to make simulations of pedestrian dynamics more reliable in this regard, this thesis introduces a new software framework. This framework provides the possibility to predict route choices of a group of people with varying spatial knowledge degrees. Therefor, the framework also considers selected wayfinding strategies that are applied beside the use of spatial memories. These are using signage, using generalized knowledge about the structure of buildings, and search strategies. In addition, three studies have been conducted in order to investigate wayfinding abilities and strategies of people in office buildings and subway stations. The results of the studies are discussed and are used to calibrate and test the models of the new software framework. Finally, the framework is applied to conduct a case study of an evacuation scenario in a subway station. The case study turns out that the egress time in the station is strongly dependent on the wayfinding strategies and abilities of the occupants. This outcome suggests that the proper consideration and prediction of route choices is relevant and necessary for reliable evacuation simulations.Computersimulationen von FußgĂ€ngerströmen sind heutzutage ein gĂ€ngiges Hilfsmittel, wenn es darum geht, Sicherheitsrisiken eines geplanten Neubaus oder Bestandsobjektes im Vorfeld zu erkennen und zu analysieren. Die Mehrheit der Modelle fĂŒr die Routenwahl von FußgĂ€ngern legt die Annahme zugrunde, dass Menschen sich fĂŒr einen Weg entscheiden, deren zurĂŒckzulegende Strecke möglichst kurz ist oder deren Reisezeit möglichst klein ist. Dies impliziert, dass sĂ€mtliche RĂ€ume, AusgĂ€nge, Korridore, etc. jedem FußgĂ€nger bekannt sind. Diese Annahme kann im Besonderem bei der Betrachtung von komplexen GebĂ€uden nur als starke Vereinfachung der menschlichen Orientierung bzw. Wegfindung angesehen werden. Um Evakuierungssimulation diesbezĂŒglich zu verbessern bzw. belastbarer zu machen, stellt die vorliegende Thesis ein neues Software-Framework vor. Dieses bietet die Möglichkeit, auch FußgĂ€nger bzw. deren Routenwahl abzubilden, die nur Teile des GebĂ€udes kennen oder denen das GebĂ€ude unbekannt ist. Die Modelle des Frameworks berĂŒcksichtigen hierbei die Anwendung von rĂ€umlichem Wissen (kognitive Karte), die Nutzung der Fluchtwegsbeschilderung und die Verwendung von generalisiertem Wissen ĂŒber GebĂ€udestrukturen. Des Weiteren wurden drei Studien zur Untersuchung der Wegewahl von Personen in BĂŒrogebĂ€uden und U-Bahnhöfen durchgefĂŒhrt. Die Ergebnisse der Studien werden in dieser Thesis diskutiert und zur Kalibrierung und PrĂŒfung der Modelle herangezogen. Schließlich wird das Framework im Rahmen einer Simulationsstudie in einer U-Bahnstation angewendet. Diese Studie zeigt, dass die RĂ€umungszeit der Station in AbhĂ€ngigkeit der Wegfindungsstrategien und -fĂ€higkeiten der Personen stark variieren kann und daher die BerĂŒcksichtigung menschlicher Wegfindung in Evakuierungssimulationen relevant ist

    Universal flow-density relation of single-file bicycle, pedestrian and car motion

    Full text link
    The relation between flow and density is an essential quantitative characteristic to describe the efficiency of traffic systems. We have performed experiments with single-file motion of bicycles and compare the results with previous studies for car and pedestrian motion in similar setups. In the space-time diagrams we observe three different states of motion (free flow state, jammed state and stop-and-go waves) in all these systems. Despite of their obvious differences they are described by a universal fundamental diagram after proper rescaling of space and time which takes into account the size and free velocity of the three kinds of agents. This indicates that the similarities between the systems go deeper than expected.Comment: 5 pages, 5 figure

    GrenseomrÄdene Norge-Russland. Luft- og nedbÞrkvalitet, april 2014-mars 2015.

    Get PDF
    Smelteverkene pÄ russisk side av den norsk-russiske grense slipper ut store mengder svoveldioksid (SO2) og tungmetaller. Dette gir forhÞyede konsentrasjoner ogsÄ pÄ norsk side. Denne rapporten inngÄr i kartlegging av miljÞbelastningen i grenseomrÄdene og omfatter mÄlinger av luftkvalitet, nedbÞrkvalitet og meteorologi

    Physiological responses to urban design during bicycling: A naturalistic investigation

    Get PDF
    The current research set out to measure the moderating effect that urban design may have on bicyclist physiology while in transition. Focusing on the hilly City of Wuppertal, Germany, we harnessed bicyclists with mobile sensors to measure their responses to urban design metrics obtained from space syntax, while also adjusting for known traffic, terrain, and contextual factors. The empirical strategy consisted of exploratory data analysis (EDA), ordinary least squares (OLS), and a local regression model to account for spatial autocorrelation. The latter model was robust (R2 = 68%), and showed that two statistically significant (p < 0.05) urban design factors influenced bicyclist physiology. Controllability, a measure of how spatially dominated a space is, increased bicyclist responses (i.e., decreased comfortability); while integration, which is related to accessibility and connectivity, had the opposite effect. Other noteworthy covariates included one-way streets and density of parked automobiles: these exerted a negative influence on bicyclist physiology. The results of this research ultimately showed that nuanced urban designs have a moderate influence on bicycling comfort. These outcomes could be utilized by practitioners focused on implementing appropriate interventions to increase bicyclist comfort levels and this mode share

    Influenza A virus H10N7 detected in dead harbor seals (Phoca vitulina) at several locations in Denmark 2014.

    Get PDF
    Influenza A virus (IAV) affects a wide range of species, though waterfowl is regarded the natural host for most IAV subtypes. Avian influenza (AI) viruses replicate in the intestinal tract of birds and are mainly transmitted by the fecal-oral route. Pinnipeds share the same shoreline habitats as many waterfowl species and are therefore potentially exposed to AIV. Outbreaks of AI in seals have been described in North America and Asia but prior to 2014 never in Europe. In 2014 massive deaths of harbor seals (Phoca vitulina) were reported in Northern Europe. In Denmark, harbor seals were initially found dead on the Danish island Anholt in Kattegat, which is the sea surrounded by Denmark, Norway and Sweden. Between June and August, 152 harbor seals were found dead. Four seals were submitted to the National Veterinary Institute in Dennmark and diagnosed with severe pneumonia. Influenza A virus of the subtype H10N7 was detected in two out of four seals. Subsequently IAV was detected in dead harbor seals at several locations in Denmark. The IAV outbreak appeared to move with time to the west through the Limfjord to the North Sea and further down south along the west coast of Jutland to the Wadden Sea. Outbreaks were subsequently reported from Germany and The Netherlands. The aim of this study was to characterize the viruses detected at the several locations by molecular and phylogenetic analysis. All viruses were subtyped as H10N7 with genes of avian origin. The HA and NA genes of the viruses were highly similar to H10N7 IAV detected in harbor seals in Sweden in the spring of 2014 and in Germany in the autumn of 2014, suggesting that the same strain of virus had spread from Sweden to Denmark and further on to Germany

    Tyrosine kinase inhibitors and interferon‐α increase tunneling nanotube (TNT) formation and cell adhesion in chronic myeloid leukemia (CML) cell lines (

    Get PDF
    Chronic myeloid leukemia (CML) is a stem cell disease of the bone marrow where mechanisms of inter‐leukemic communication and cell‐to‐cell interactions are proposed to be important for optimal therapy response. Tunneling nanotubes (TNTs) are novel intercellular communication structures transporting different cargos with potential implications in therapy resistance. Here, we have investigated TNTs in CML cells and following treatment with the highly effective CML therapeutics tyrosine kinase inhibitors (TKIs) and interferon‐α (IFNα). CML cells from chronic phase CML patients as well as the blast crisis phase cell lines, Kcl‐22 and K562, formed few or no TNTs. Treatment with imatinib increased TNT formation in both Kcl‐22 and K562 cells, while nilotinib or IFNα increased TNTs in Kcl‐22 cells only where the TNT increase was associated with adherence to fibronectin‐coated surfaces, altered morphology, and reduced movement involving ÎČ1integrin. Ex vivo treated cells from chronic phase CML patients showed limited changes in TNT formation similarly to bone marrow cells from healthy individuals. Interestingly, in vivo nilotinib treatment in a Kcl‐22 subcutaneous mouse model resulted in morphological changes and TNT‐like structures in the tumor‐derived Kcl‐22 cells. Our results demonstrate that CML cells express low levels of TNTs, but CML therapeutics increase TNT formation in designated cell models indicating TNT functionality in bone marrow derived malignancies and their microenvironment.publishedVersio

    Early and accurate detection of cholangiocarcinoma in patients with primary sclerosing cholangitis by methylation markers in bile

    Get PDF
    Background and Aims Primary sclerosing cholangitis (PSC) is associated with increased risk of cholangiocarcinoma (CCA). Early and accurate CCA detection represents an unmet clinical need as the majority of patients with PSC are diagnosed at an advanced stage of malignancy. In the present study, we aimed at establishing robust DNA methylation biomarkers in bile for early and accurate diagnosis of CCA in PSC. Approach and Results Droplet digital PCR (ddPCR) was used to analyze 344 bile samples from 273 patients with sporadic and PSC-associated CCA, PSC, and other nonmalignant liver diseases for promoter methylation of cysteine dioxygenase type 1, cannabinoid receptor interacting protein 1, septin 9, and vimentin. Receiver operating characteristic (ROC) curve analyses revealed high AUCs for all four markers (0.77-0.87) for CCA detection among patients with PSC. Including only samples from patients with PSC diagnosed with CCA 36 months) as controls, and remained high (83%) when only including patients with PSC and dysplasia as controls (n = 23). Importantly, the bile samples from the CCA-PSCPeer reviewe
    • 

    corecore