7,864 research outputs found

    Accurate radial velocity and metallicity of the Large Magellanic Cloud old globular clusters NGC1928 and NGC1939

    Get PDF
    We present results obtained from spectroscopic observations of red giants located in the fields of the Large Magellanic Cloud (LMC) globular clusters (GCs) NGC1928 and NGC1939. We used the GMOS and AAOmega+2dF spectrographs to obtain spectra centred on the Ca II triplet, from which we derived individual radial velocities (RVs) and metallicities. From cluster members we derived mean RVs of RVNGC1928 = 249.58±4.65 km s-1 and RVNGC1939 = 258.85±2.08 km s-1, and mean metallicities of [Fe/H]NGC1928 = -1.30±0.15 dex and [Fe/H]NGC1939 = -2.00±0.15 dex. We found that both GCs have RVs and positions consistent with being part of the LMC disc, so that we rule out any possible origin, but in the same galaxy. By computing the best solution of a disc that fully contains each GC, we obtained circular velocities for the 15 known LMC GCs. We found that 11/15 of the GCs share the LMC rotation derived from HST and Gaia DR2 proper motions. This outcome reveals that the LMC disc existed since the very early epoch of the galaxy formation and experienced the steep relatively fast chemical enrichment shown by its GC metallicities. The four remaining GCs turned out to have circular velocities not compatible with an in situ cluster formation, but rather with being stripped from the SMC.Fil: Piatti, Andres Eduardo. Universidad Nacional de Córdoba. Observatorio Astronómico de Córdoba; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Hwang, N.. Korea Astronomy And Space Science Institute; Corea del SurFil: Cole, A. A.. University of Tasmania; AustraliaFil: Angelo, M. S.. Laboratorio Nacional de Astrofisica; BrasilFil: Emptage, B.. University of Tasmania; Australi

    Influence of Fire on the Shear Capacity of Cold-Formed Steel Framed Shear Walls

    Get PDF
    This paper presents experimental investigations of the performance of common lateral force-resisting systems used in cold-formed steel construction under sequential thermal (fire) and mechanical (earthquake) loading. Wall specimens with gypsum-sheet steel composite sheathing, Oriented Strand Board (OSB) sheathing, or steel strap bracing were tested. The results demonstrate that the lateral capacity of wall systems can be reduced by exposure to fire. Additionally, fire performance of wall systems can be affected by pre-damage to the fire-resistive components that provide fire protection to these walls. The results are useful for fire compartmentation design when significant lateral deformation of a building is anticipated and post-fire assessment to repair or replace a structure. The study represents a step toward developing fire fragility functions for cold-formed steel framed shear wall systems to enable performance-based fire design

    Early Childhood Science and Engineering: Engaging Platforms for Fostering Domain-General Learning Skills

    Get PDF
    Early childhood science and engineering education offer a prime context to foster approaches-to-learning (ATL) and executive functioning (EF) by eliciting children’s natural curiosity about the world, providing a unique opportunity to engage children in hands-on learning experiences that promote critical thinking, problem solving, collaboration, persistence, and other adaptive domain-general learning skills. Indeed, in any science experiment or engineering problem, children make observations, engage in collaborative conversations with teachers and peers, and think flexibly to come up with predictions or potential solutions to their problem. Inherent to science and engineering is the idea that one learns from initial failures within an iterative trial-and-error process where children practice risk-taking, persistence, tolerance for frustration, and sustaining focus. Unfortunately, science and engineering instruction is typically absent from early childhood classrooms, and particularly so in programs that serve children from low-income families. However, our early science and engineering intervention research shows teachers how to build science and engineering instruction into activities that are already happening in their classrooms, which boosts their confidence and removes some of the stigma around science and engineering. In this paper, we discuss the promise of research that uses early childhood science and engineering experiences as engaging, hands-on, interactive platforms to instill ATL and EF in young children living below the poverty line. We propose that early childhood science and engineering offer a central theme that captures children’s attention and allows for integrated instruction across domain-general (ATL, EF, and social–emotional) and domain-specific (e.g., language, literacy, mathematics, and science) content, allowing for contextualized experiences that make learning more meaningful and captivating for children

    A Multi-cut Formulation for Joint Segmentation and Tracking of Multiple Objects

    No full text
    Recently, Minimum Cost Multicut Formulations have been proposed and proven to be successful in both motion trajectory segmentation and multi-target tracking scenarios. Both tasks benefit from decomposing a graphical model into an optimal number of connected components based on attractive and repulsive pairwise terms. The two tasks are formulated on different levels of granularity and, accordingly, leverage mostly local information for motion segmentation and mostly high-level information for multi-target tracking. In this paper we argue that point trajectories and their local relationships can contribute to the high-level task of multi-target tracking and also argue that high-level cues from object detection and tracking are helpful to solve motion segmentation. We propose a joint graphical model for point trajectories and object detections whose Multicuts are solutions to motion segmentation {\it and} multi-target tracking problems at once. Results on the FBMS59 motion segmentation benchmark as well as on pedestrian tracking sequences from the 2D MOT 2015 benchmark demonstrate the promise of this joint approach

    Exchange Interactions and High-Energy Spin States in Mn_12-acetate

    Full text link
    We perform inelastic neutron scattering measurements on the molecular nanomagnet Mn_12-acetate to measure the excitation spectrum up to 45meV (500K). We isolate magnetic excitations in two groups at 5-6.5meV (60-75K) and 8-10.5meV (95-120K), with higher levels appearing only at 27meV (310K) and 31meV (360K). From a detailed characterization of the transition peaks we show that all of the low-energy modes appear to be separate S = 9 excitations above the S = 10 ground state, with the peak at 27meV (310K) corresponding to the first S = 11 excitation. We consider a general model for the four exchange interaction parameters of the molecule. The static susceptibility is computed by high-temperature series expansion and the energy spectrum, matrix elements and ground-state spin configuration by exact diagonalization. The theoretical results are matched with experimental observation by inclusion of cluster anisotropy parameters, revealing strong constraints on possible parameter sets. We conclude that only a model with dominant exchange couplings J_1 ~ J_2 ~ 5.5meV (65K) and small couplings J_3 ~ J_4 ~ 0.6meV (7K) is consistent with the experimental data.Comment: 17 pages, 12 figure

    The Role of Gas in the Merging of Massive Black Holes in Galactic Nuclei. I. Black Hole Merging in a Spherical Gas Cloud

    Full text link
    Using high-resolution SPH numerical simulations, we investigate the effects of gas on the inspiral and merger of a massive black hole binary. This study is motivated by both observational and theoretical work that indicate the presence of large amounts of gas in the central regions of merging galaxies. N-body simulations have shown that the coalescence of a massive black hole binary eventually stalls in a stellar background. However, our simulations suggest that the massive black hole binary will finally merge if it is embedded in a gaseous background. Here we present results in which the gas is assumed to be initially spherical with a relatively smooth distribution. In the early evolution of the binary, the separation dimishes due to the gravitational drag exerted by the background gas. In the later stages, when the binary dominates the gravitational potential in its vicinity, the medium responds by forming an ellipsoidal density enhancement whose axis lags behind the binary axis, and this offset produces a torque on the binary that causes continuing loss of angular momentum and is able to reduce the binary separation to distances where gravitational radiation is efficient. Assuming typical parameters from observations of Ultra Luminous Infrared Galaxies, we predict that a black hole binary will merge within 10710^{7}yrs; therefore these results imply that in a merger of gas-rich galaxies, any massive central black holes will coalescence soon after the galaxies merge. Our work thus supports scenarios of massive black hole evolution and growth where hierarchical merging plays an important role. The final coalescence of the black holes leads to gravitational radiation emission that would be detectable up to high redshift by LISA. We show that similar physical effects are important for the formation of close binary stars.Comment: 38 pages, 14 figures, submitted to Ap

    Control of Jointvetch (Aeschynomene spp.), Establishment and Productivity of Rice as a Function of [Imazapic + Imazapyr] Doses.

    Get PDF
    Made available in DSpace on 2018-09-08T00:31:06Z (GMT). No. of bitstreams: 1 GermaniConcencoJASImasJointvetch.pdf: 1266996 bytes, checksum: 638fba752b48720e2f849fb8cc30b57c (MD5) Previous issue date: 2018-09-06bitstream/item/182558/1/Germani-Concenco-JAS-Imas-Jointvetch.pd
    • …
    corecore