170 research outputs found

    Rotating biological contactors : a review on main factors affecting performance

    Get PDF
    Rotating biological contactors (RBCs) constitute a very unique and superior alternative for biodegradable matter and nitrogen removal on account of their feasibility, simplicity of design and operation, short start-up, low land area requirement, low energy consumption, low operating and maintenance cost and treatment efficiency. The present review of RBCs focus on parameters that affect performance like rotational speed, organic and hydraulic loading rates, retention time, biofilm support media, staging, temperature, influent wastewater characteristics, biofilm characteristics, dissolved oxygen levels, effluent and solids recirculation, stepfeeding and medium submergence. Some RBCs scale-up and design considerations, operational problems and comparison with other wastewater treatment systems are also reported.Fundação para a Ciência e a Tecnologia (FCT

    Investigation of the key chemical structures involved in the anticancer activity of disulfiram in A549 non-small cell lung cancer cell line

    Get PDF
    © 2018 The Author(s). Background: Disulfiram (DS), an antialcoholism medicine, demonstrated strong anticancer activity in the laboratory but did not show promising results in clinical trials. The anticancer activity of DS is copper dependent. The reaction of DS and copper generates reactive oxygen species (ROS). After oral administration in the clinic, DS is enriched and quickly metabolised in the liver. The associated change of chemical structure may make the metabolites of DS lose its copper-chelating ability and disable their anticancer activity. The anticancer chemical structure of DS is still largely unknown. Elucidation of the relationship between the key chemical structure of DS and its anticancer activity will enable us to modify DS and speed its translation into cancer therapeutics. Methods: The cytotoxicity, extracellular ROS activity, apoptotic effect of DS, DDC and their analogues on cancer cells and cancer stem cells were examined in vitro by MTT assay, western blot, extracellular ROS assay and sphere-reforming assay. Results: Intact thiol groups are essential for the in vitro cytotoxicity of DS. S-methylated diethyldithiocarbamate (S-Me-DDC), one of the major metabolites of DS in liver, completely lost its in vitro anticancer activity. In vitro cytotoxicity of DS was also abolished when its thiuram structure was destroyed. In contrast, modification of the ethyl groups in DS had no significant influence on its anticancer activity. Conclusions: The thiol groups and thiuram structure are indispensable for the anticancer activity of DS. The liver enrichment and metabolism may be the major obstruction for application of DS in cancer treatment. A delivery system to protect the thiol groups and development of novel soluble copper-DDC compound may pave the path for translation of DS into cancer therapeutics.This work was supported by grant from British Lung Foundation (RG14–8) and Innovate UK (104022).Published versio

    Trattamenti termici

    No full text
    • …
    corecore