82 research outputs found

    Mesocosm‐based simulations to optimize a bioremediation strategy for the effective restoration of wildfire‐impacted soils contaminated with high‐molecular‐weight hydrocarbons

    Get PDF
    Aims: We obtained four microbial isolates from soil exposed to forest fire and evaluated their potential bioremediation activity when combined with a biosurfactant-producing bacterial strain for the decontamination of wildfire-impacted soil polluted with high-molecular-weight (HMW) hydrocarbons. Methods and Results: We established mesocosm trials to compare three bioremediation strategies: natural attenuation, bioaugmentation and biostimulation. Chemical analysis, culture-dependent and culture-independent methods were used to evaluate the bioremediation efficiency and speciation of the microbial cenoses based on these approaches. After treatment for 90 days, bioaugmentation removed 75·2–75·9% of the HMW hydrocarbons, biostimulation removed 63·2–69·5% and natural attenuation removed ~22·5%. Hydrocarbon degradation was significantly enhanced in the mesocosm supplemented with the biosurfactant-producing bacterial strain after 20 and 50 days of treatment compared to the other bioremediation strategies. Conclusions: We found that the bioaugmentation approach was more effective than biostimulation and natural attenuation for the removal of HMW hydrocarbons from fire-impacted soil. Significance and Impact of the Study: Our study showed that micro-organisms from wildfire-impacted soil show significant potential for bioremediation, and that biosurfactant-producing bacterial strains can be combined with them as part of an effective bioremediation strategy

    Electronic excitation of the methyl methacrylate and styrene molecules in the vuv range

    Get PDF
    Angle-resolved electron energy-loss spectra have been measured for the methyl methacrylate (MMA) and styrene molecules in the 0 - 50 eV energy range. The spectra have been obtained at 1 keV incident energy, with an energy resolution of 0.8 eV and covering an angular range of 2.0 to 7.0 degrees. Within our knowledge, this is the first gas-phase excitation spectrum for MMA and styrene in this energy range. The spectra of MMA at small scattering angles are dominated by an intense peak at 6.7 eV followed by a broad band centered at about 16 eV. In the case of styrene, six bands can be observed in the spectra. Based on the angular behaviour of the excitation spectra of these molecules, the low-lying peaks observed are considered to be associated predominantly with dipole-allowed processes. In both cases, new bands can be observed for excitation energies greater than 20 eV. This could be associated with dipole-forbidden transitions to shake-up and doubly-excited states.

    Understanding Factors Associated With Psychomotor Subtypes of Delirium in Older Inpatients With Dementia

    Get PDF

    Seismic assessment of a heavy-timber frame structure with ring-doweled moment-resisting connections

    Get PDF
    The performance of heavy-timber structures in earthquakes depends strongly on the inelastic behavior of the mechanical connections. Nevertheless, the nonlinear behavior of timber structures is only considered in the design phase indirectly through the use of an R-factor or a q-factor, which reduces the seismic elastic response spectrum. To improve the estimation of this, the seismic performance of a three-story building designed with ring-doweled moment resisting connections is analyzed here. Connections and members were designed to fulfill the seismic detailing requirements present in Eurocode 5 and Eurocode 8 for high ductility class structures. The performance of the structure is evaluated through a probabilistic approach, which accounts for uncertainties in mechanical properties of members and connections. Nonlinear static analyses and multi-record incremental dynamic analyses were performed to characterize the q-factor and develop fragility curves for different damage levels. The results indicate that the detailing requirements of Eurocode 5 and Eurocode 8 are sufficient to achieve the required performance, even though they also indicate that these requirements may be optimized to achieve more cost-effective connections and members. From the obtained fragility curves, it was verified that neglecting modeling uncertainties may lead to overestimation of the collapse capacity

    Global energy budgets in turbulent Couette and Poiseuille flows

    Get PDF
    Turbulent plane Poiseuille and Couette flows share the same geometry, but produce their flow rate owing to different external drivers: pressure gradient and shear, respectively. By looking at integral energy fluxes, we pose and answer the question as to which flow performs better at creating flow rate. We define a flow efficiency, which quantifies the fraction of power used to produce flow rate instead of being wasted as a turbulent overhead; effectiveness, instead, describes the amount of flow rate produced by a given power. The work by Gatti et al. (J. Fluid Mech., vol. 857, 2018, pp. 345-373), where the constant power input concept was developed to compare turbulent Poiseuille flows with drag reduction, is here extended to compare different flows. By decomposing the mean velocity field into a laminar contribution and a deviation, analytical expressions are derived which are the energy-flux equivalents of the FIK identity. These concepts are applied to literature data supplemented by a new set of direct numerical simulations, to find that Couette flows are less efficient but more effective than Poiseuille flows. The reason is traced to the more effective laminar component of Couette flows, which compensates for their higher turbulent activity. It is also observed that, when the fluctuating fields of the two flows are fed with the same total power fraction, Couette flows dissipate a smaller percentage of it via turbulent dissipation. A decomposition of the fluctuating field into large and small scales explains this feature: Couette flows develop stronger large-scale structures, which alter the mean flow while contributing less significantly to dissipation

    On a weakened form of the averaging principle in multifrequency systems

    No full text
    We revisit the well known problem of the validity of the averaging principle in multifrequency systems. With analyticity hypotheses, we prove that for initial data satisfying a finite number of nonresonance conditions the slow variables I(t) remain close to the solution I(t) of the averaged system starting from the same initial point. The difference being O( epsilon mod ln epsilon mod a) for times as long as O(1/ epsilon mod ln epsilon mod b), with positive a and b. The set of good initial data is characterized in an explicit way, possibly leading to practical applications
    corecore